⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Overview

fastt5 icon

Reduce T5 model size by 3X and increase the inference speed up to 5X.

PyPI - License example workflow PyPI PyPI - Downloads


T5 models can be used for several NLP tasks such as summarization, QA, QG, translation, text generation, and more. Sequential text generation is naturally slow, and for larger T5 models it gets even slower. fastT5 makes the T5 models inference faster by running it on onnxruntime. and it also decreases the model size by quantizing it.

fastT5 library allows you to convert a pretrained T5 model to onnx, quantizes it, and gives the model as output which is running on an onnxruntime in a single line of code. You can also customize this whole process.


Install

You can install fastT5 from PyPI:

 pip install fastt5

If you want to build from source:

git clone https://github.com/Ki6an/fastT5
cd fastT5
pip3 install -e .

Usage

The export_and_get_onnx_model() method exports the given pretrained T5 model to onnx, quantizes it and runs it on the onnxruntime with default settings. The returned model from this method supports the generate() method of huggingface.

If you don't wish to quantize the model then use quantized=False in the method.

from fastT5 import export_and_get_onnx_model
from transformers import AutoTokenizer

model_name = 't5-small'
model = export_and_get_onnx_model(model_name)

tokenizer = AutoTokenizer.from_pretrained(model_name)
t_input = "translate English to French: The universe is a dark forest."
token = tokenizer(t_input, return_tensors='pt')

tokens = model.generate(input_ids=token['input_ids'],
               attention_mask=token['attention_mask'],
               num_beams=2)

output = tokenizer.decode(tokens.squeeze(), skip_special_tokens=True)
print(output)

to run the already exported model use get_onnx_model()

you can customize the whole pipeline as shown in the below code example:

from fastT5 import (OnnxT5, get_onnx_runtime_sessions,
                    generate_onnx_representation, quantize)
from transformers import AutoTokenizer

model_or_model_path = 't5-small'

# Step 1. convert huggingfaces t5 model to onnx
onnx_model_paths = generate_onnx_representation(model_or_model_path)

# Step 2. (recommended) quantize the converted model for fast inference and to reduce model size.
quant_model_paths = quantize(onnx_model_paths)

# step 3. setup onnx runtime
model_sessions = get_onnx_runtime_sessions(quant_model_paths)

# step 4. get the onnx model
model = OnnxT5(model_or_model_path, model_sessions)

                      ...

Details

T5 is a seq2seq model (Encoder-Decoder), as it uses decoder repeatedly for inference, we can't directly export the whole model to onnx. We need to export the encoder and decoder separately.

past_key_values contain pre-computed hidden-states (key and values in the self-attention blocks and cross-attention blocks) that can be used to speed up sequential decoding.

models can only be exported with a constant number of inputs. Contrary to this, the decoder of the first step does not take past_key_values and the rest of the steps decoders do. To get around this issue, we can create two decoders: one for the first step that does not take past_key_values and another for the rest of the steps that utilize the past_key_values.

Next, we'll export all three models (encoder, decoder, init_decoder). And then quantize them, quantizing 32bit to 8bit should give the 4x memory reduction. Since there is an extra decoder the model size reduces by 3x.

Finally, we'll run the quantized model on onnx runtime.

The inference is simple as the model supports the generate() method of huggingface.

Functionalities

  • Export any pretrained T5 model to ONNX easily (with past_key_values).
  • The exported model supports beam search and greedy search and more via generate() method.
  • Reduce the model size by 3X using quantization.
  • Up to 5X speedup compared to PyTorch execution for greedy search and 3-4X for beam search.

Benchmarks

The benchmarks are the result of the T5-base model tested on English to French translation.

Onnx model

The following graph shows the latency of the quantized onnx model vs the PyTorch model for beam numbers varying from 1 to 9. The latencies shown here are for the mean of sequence lengths up to 130.

t5-base

The following heat map shows the X times faster which the ratio of latency of PyTorch to onnx model. The onnx model outperforms most cases. however, the speed of the model drops for a longer sequence length.

t5-base-hist

Quantized onnx model

Quantized models are lightweight models as mentioned earlier, these models have almost the same accuracy as the original model (quantized model scores are mentioned in the next section). Quantized onnx models have the lowest latency compared to both Onnx & PyTorch models.

t5-base-quant

The model outperforms the PyTorch model by 5.7X for greedy search on average and 3-4X for beam search.

t5-base-quant-hist

Note : The results were generated on AMD EPYC 7B12, these results may vary from device to device. The Onnx models usually perform well on high-end CPUs with more cores.

Quantized model scores

The results were tested for English to French translation with beam search number of 3.

Bleu_4 METEOR ROUGE_L
t5-small (quant) 0.240769 0.282342 0.468817
t5-small (pytorch) 0.254601 0.295172 0.492749
t5-base (quant) 0.267606 0.306019 0.499188
t5-base (pytorch) 0.268346 0.304969 0.503306
t5-large (quant) 0.286726 0.316845 0.503585
t5-large (pytorch) 0.294015 0.315774 0.508677

further improvements

  • currently the fastT5 library supports only the cpu version of onnxruntime, gpu implementation still needs to be done.
  • graph optimization of the onnx model will further reduce the latency.

Get Help

Acknowledgements

@article{2019t5,
  author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
  title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
  journal = {arXiv e-prints},
  year = {2019},
  archivePrefix = {arXiv},
  eprint = {1910.10683},
}
Owner
Kiran R
Kiran R
Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

TestRank in Pytorch Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Ya

3 May 19, 2022
Generate a cool README/About me page for your Github Profile

Github Profile README/ About Me Generator 💯 This webapp lets you build a cool README for your profile. A few inputs + ~15 mins = Your Github Profile

Rahul Banerjee 179 Jan 07, 2023
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

9 Dec 28, 2021
A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

Alexa 62 Dec 20, 2022
VMD Audio/Text control with natural language

This repository is a proof of principle for performing Molecular Dynamics analysis, in this case with the program VMD, via natural language commands.

Andrew White 13 Jun 09, 2022
Stanford CoreNLP provides a set of natural language analysis tools written in Java

Stanford CoreNLP Stanford CoreNLP provides a set of natural language analysis tools written in Java. It can take raw human language text input and giv

Stanford NLP 8.8k Jan 07, 2023
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
✨Fast Coreference Resolution in spaCy with Neural Networks

✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv

Hugging Face 2.6k Jan 04, 2023
Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Fortalice Solutions, LLC 78 Dec 12, 2022
GSoC'2021 | TensorFlow implementation of Wav2Vec2

GSoC'2021 | TensorFlow implementation of Wav2Vec2

Vasudev Gupta 73 Nov 28, 2022
Random Directed Acyclic Graph Generator

DAG_Generator Random Directed Acyclic Graph Generator verison1.0 简介 工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权

Livion 17 Dec 27, 2022
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Tsukinousag1 3 Apr 02, 2022
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022