NL. The natural language programming language.

Related tags

Text Data & NLPNL
Overview

NL

A Natural-Language programming language. Built using Codex.

A few examples are inside the nl_projects directory.

How it works

Write any code in pure english, and have it compiled and run as regular code would. The only rules are:

  • Must have the .nl file extension
  • Every command is separated by a line-break
  • Make sure to keep the number of stuff per-line to a minimum. Doing so will result in better compilation.
  • comments are put in-between parentheses

Example: Guessing game.

Compiling a guessing game program looks something like this:

First you write the code in NL:

(the following is a guessing game)
create a maximum number of 100

Repeat forever...
Store a number between 1 and the maximum number. Call it the answer.
Increase the maximum number by 20
Tell the user that you are thinking of a number between 0 and the maximum number. Tell the user that they only have 14 chances to get it right.
Repeat 14 times...
Ask the user for a guess, and Convert it to a number
if the guess is equal to the answer, congrad the user and end the loop.
otherwise if the guess is higher or lower than the answer, tell the user.
Tell the user how many chances are left.
when the loop has ended, if the user has not guessed the answer, tell the user game over and then exit the game

When you compile the code, it gets copied into a directory and auto-indented (This stage can be skipped if desired, but doing so will result in greater likelyhood of erroneous code.):

Create a maximum number of 100

Repeat forever...
    Store a number between 1 and the maximum number. Call it the answer.
    Increase the maximum number by 20.
    Tell the user that you are thinking of a number between 0 and the maximum number. Tell the user that they only have 14 chances to get it right.
    Repeat 14 times...
        Ask the user for a guess, and Convert it to a number
        If the guess is equal to the answer, congradulate the user and end the loop.
        Otherwise if the guess is higher or lower than the answer, tell the user.
        Tell the user how many chances are left.
    When loop has ended, If user has not guessed the answer, tell the user game over and then exit the game.

Which then gets compiled to python code and executed:

answer: print("Your guess is too high") else: print("Your guess is too low") # CMD: Tell the user how many chances are left. print("You have " + str(14 - i) + " chances left") # CMD: When loop has ended, If user has not guessed the answer, tell the user game over and then exit the game. if guess != answer: print("Game over") exit()">
import random

# CMD: Create a maximum number of 100
max = 100
# CMD: Repeat forever...
while True:
    # CMD: Store a number between 1 and the maximum number. Call it the answer.
    answer = random.randint(1,max)
    # CMD: Increase the maximum number by 20.
    max = max + 20
    # CMD: Tell the user that you are thinking of a number between 0 and the maximum number. Tell the user that they only have 14 chances to get it right.
    print("I am thinking of a number between 0 and " + str(max))
    # CMD: Repeat 14 times...
    for i in range(0,14):
        # CMD: Ask the user for a guess, and Convert it to a number
        guess = int(input("Guess a number:"))
        # CMD: If the guess is equal to the answer, congradulate the user and end the loop.
        if guess == answer:
            print("You guessed it!")
            break;
        # CMD: Otherwise if the guess is higher or lower than the answer, tell the user.
        elif guess > answer:
            print("Your guess is too high")
        else: 
            print("Your guess is too low")
        # CMD: Tell the user how many chances are left.
        print("You have " + str(14 - i) + " chances left")
    # CMD: When loop has ended, If user has not guessed the answer, tell the user game over and then exit the game.
    if guess != answer:
        print("Game over")
        exit()

API List of commands (in compilation.py)

  • compile(nl_code_path)
  • compileAndRun(nl_code_path)
  • run(python_code_path)
  • compileWithoutCorrection(nl_code_path) Compiles without creating an indentation file to compile.
Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

snoop2head 14 Nov 15, 2022
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre

Kevin Canwen Xu 284 Nov 25, 2022
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023
Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

UlionTse 907 Dec 27, 2022
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

RAMI ALRFOU 2.1k Jan 07, 2023
LCG T-TEST USING EUCLIDEAN METHOD

This project has been created for statistical usage, purposing for determining ATL takers and nontakers using LCG ttest and Euclidean Method, especially for internal business case in Telkomsel.

2 Jan 21, 2022
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
TextFlint is a multilingual robustness evaluation platform for natural language processing tasks,

TextFlint is a multilingual robustness evaluation platform for natural language processing tasks, which unifies general text transformation, task-specific transformation, adversarial attack, sub-popu

TextFlint 587 Dec 20, 2022
A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

QData 17 Oct 15, 2022
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Finetune gpt-2 in google colab

gpt-2-colab finetune gpt-2 in google colab sample result (117M) from retraining on A Tale of Two Cities by Charles Di

212 Jan 02, 2023
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023