Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Overview

Mask-Align: Self-Supervised Neural Word Alignment

This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment.

@inproceedings{chen2021maskalign,
   title={Mask-Align: Self-Supervised Neural Word Alignment},
   author={Chi Chen and Maosong Sun and Yang Liu},
   booktitle={Association for Computational Linguistics (ACL)},
   year={2021}
}

The implementation is built on top of THUMT.

Contents

Introduction

Mask-Align is a self-supervised neural word aligner. It parallelly masks out each target token and predicts it conditioned on both source and the remaining target tokens. The source token that contributes most to recovering a masked target token will be aligned to that target token.

Prerequisites

  • PyTorch
  • NLTK
  • remi *
  • pyecharts *
  • pandas *
  • matplotlib *
  • seaborn *

*: optional, only used for Visualization.

Usage

Data Preparation

To get the data used in our paper, you can follow the instructions in https://github.com/lilt/alignment-scripts.

To train an aligner with your own data, you should pre-process it yourself. Usually this includes tokenization, BPE, etc. You can find a simple guide here.

Now we have the pre-processed parallel training data (train.src, train.tgt), validation data (optional) (valid.src, valid.tgt) and test data (test.src, test.tgt). An example 3-sentence German–English parallel training corpus is:

# train.src
wiederaufnahme der sitzungsperiode
frau präsidentin , zur geschäfts @@ordnung .
ich bitte sie , sich zu einer schweigeminute zu erheben .

# train.tgt
resumption of the session
madam president , on a point of order .
please rise , then , for this minute ' s silence .

The next step is to shuffle the training set, which proves to be helpful for improving the results.

python thualign/scripts/shuffle_corpus.py --corpus train.src train.tgt

The resulting files train.src.shuf and train.tgt.shuf rearrange the sentence pairs randomly.

Then we need to generate vocabulary from the training set.

python thualign/scripts/build_vocab.py train.src.shuf vocab.train.src
python thualign/scripts/build_vocab.py train.tgt.shuf vocab.train.tgt

The resulting files vocab.train.src.txt and vocab.train.tgt.txt are final source and target vocabularies used for model training.

Training

All experiments are configured via config files in thualign/configs, see Configs for more details.. We provide an example config file thualign/configs/user/example.config. You can easily use it by making three changes:

  1. change device_list, update_cycle and batch_size to match your machine configuration;

  2. change exp_dir and output to your own experiment directory

  3. change train/valid/test_input and vocab to your data paths;

When properly configured, you can use the following command to train an alignment model described in the config file

bash thualign/bin/train.sh -s thualign/configs/user/example.config

or more simply

bash thualign/bin/train.sh -s example

The configuration file is an INI file and is parsed through configparser. By adding a new section, you can easily customize some configs while keep other configs unchanged.

[DEFAULT]
...

[small_budget]
batch_size = 4500
update_cycle = 8
device_list = [0]
half = False

Use -e option to run this small_budget section

bash thualign/bin/train.sh -s example -e small_budget

You can also monitor the training process through tensorboard

tensorboard --logdir=[output]

Test

After training, the following command can be used to generate attention weights (-g), generate data for attention visualization (-v), and test its AER (-t) if test_ref is provided.

bash thualign/bin/test.sh -s [CONFIG] -e [EXP] -gvt

For example, to test the model trained with the configs in example.config

bash thualign/bin/test.sh -s example -gvt

You might get the following output

alignment-soft.txt: 14.4% (87.7%/83.5%/9467)

The alignment results (alignment.txt) along with other test results are stored in [output]/test by default.

Configs

Most of the configuration of Mask-Align is done through configuration files in thualign/configs. The model reads the basic configs first, followed by the user-defined configs.

Basic Config

Predefined configs for experiments to use.

  • base.config: basic configs for training, validation and test

  • model.config: define different models with their hyperparameters

User Config

Customized configs that must describe the following configuration and maybe other experiment-specific parameters:

  • train/valid/test_input: paths of input parallel corpuses
  • vocab: paths of vocabulary files generated from thualign/scripts/build_vocab.py
  • output: path to save the model outputs
  • model: which model to use
  • batch_size: the batch size (number of tokens) used in the training stage.
  • update_cycle: the number of iterations for updating model parameters. The default value is 1. If you have only 1 GPU and want to obtain the same translation performance with using 4 GPUs, simply set this parameter to 4. Note that the training time will also be prolonged.
  • device_list: the list of GPUs to be used in training. Use the nvidia-smi command to find unused GPUs. If the unused GPUs are gpu0 and gpu1, set this parameter as device_list=[0,1].
  • half: set this to True if you wish to use half-precision training. This will speeds up the training procedure. Make sure that you have the GPUs with half-precision support.

Here is a minimal experiment config:

### thualign/configs/user/example.config
[DEFAULT]

train_input = ['train.src', 'train.tgt']
valid_input = ['valid.src', 'valid.tgt']
vocab = ['vocab.src.txt', 'vocab.tgt.txt']
test_input = ['test.src', 'test.tgt']
test_ref = test.talp

exp_dir = exp
label = agree_deen
output = ${exp_dir}/${label}

model = mask_align

batch_size = 9000
update_cycle = 1
device_list = [0,1,2,3]
half = True

Visualization

To better understand and analyze the model, Mask-Align supports the following two types of visulizations.

Training Visualization

Add eval_plot = True in your config file to turn on visualization during training. This will plot 5 attention maps from evaluation in the tensorboard.

These packages are required for training visualization:

  • pandas
  • matplotlib
  • seaborn

Attention Visualization

Use -v in the test command to generate alignment_vizdata.pt first. It is stored in [output]/test by default. To visualize it, using this script

python thualign/scripts/visualize.py [output]/test/alignment_vizdata.pt [--port PORT]

This will start a local service that plots the attention weights for all the test sentence pairs. You can access it through a web browser.

These packages are required for training visualization:

  • remi
  • pyecharts

Contact

If you have questions, suggestions and bug reports, please email [email protected].

Owner
THUNLP-MT
Machine Translation Group, Natural Language Processing Lab at Tsinghua University (THUNLP). Please refer to https://github.com/thunlp for more NLP resources.
THUNLP-MT
Transformer Based Korean Sentence Spacing Corrector

TKOrrector Transformer Based Korean Sentence Spacing Corrector License Summary This solution is made available under Apache 2 license. See the LICENSE

Paul Hyung Yuel Kim 3 Apr 18, 2022
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

2k Jan 04, 2023
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
CPC-big and k-means clustering for zero-resource speech processing

The CPC-big model and k-means checkpoints used in Analyzing Speaker Information in Self-Supervised Models to Improve Zero-Resource Speech Processing.

Benjamin van Niekerk 5 Nov 23, 2022
Shellcode antivirus evasion framework

Schrodinger's Cat Schrodinger'sCat is a Shellcode antivirus evasion framework Technical principle Please visit my blog https://idiotc4t.com/ How to us

idiotc4t 27 Jul 09, 2022
A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code or write code yourself

Scriptfab - What is it? A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code

DevNugget 3 Jul 28, 2021
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor

Princeton Natural Language Processing 92 Dec 27, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
⚖️ A Statutory Article Retrieval Dataset in French.

A Statutory Article Retrieval Dataset in French This repository contains the Belgian Statutory Article Retrieval Dataset (BSARD), as well as the code

Maastricht Law & Tech Lab 19 Nov 17, 2022
Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation

Diego 1 Mar 20, 2022
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing

FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP

FedML-AI 216 Nov 27, 2022
Speach Recognitions

easy_meeting Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting. Website - http://cf5c-62-192-251-83.ngrok.io/ Принципиа

Maksim 3 Feb 18, 2022
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image

K. Seeliger 2 May 17, 2022
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022