Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Overview

Mask-Align: Self-Supervised Neural Word Alignment

This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment.

@inproceedings{chen2021maskalign,
   title={Mask-Align: Self-Supervised Neural Word Alignment},
   author={Chi Chen and Maosong Sun and Yang Liu},
   booktitle={Association for Computational Linguistics (ACL)},
   year={2021}
}

The implementation is built on top of THUMT.

Contents

Introduction

Mask-Align is a self-supervised neural word aligner. It parallelly masks out each target token and predicts it conditioned on both source and the remaining target tokens. The source token that contributes most to recovering a masked target token will be aligned to that target token.

Prerequisites

  • PyTorch
  • NLTK
  • remi *
  • pyecharts *
  • pandas *
  • matplotlib *
  • seaborn *

*: optional, only used for Visualization.

Usage

Data Preparation

To get the data used in our paper, you can follow the instructions in https://github.com/lilt/alignment-scripts.

To train an aligner with your own data, you should pre-process it yourself. Usually this includes tokenization, BPE, etc. You can find a simple guide here.

Now we have the pre-processed parallel training data (train.src, train.tgt), validation data (optional) (valid.src, valid.tgt) and test data (test.src, test.tgt). An example 3-sentence German–English parallel training corpus is:

# train.src
wiederaufnahme der sitzungsperiode
frau präsidentin , zur geschäfts @@ordnung .
ich bitte sie , sich zu einer schweigeminute zu erheben .

# train.tgt
resumption of the session
madam president , on a point of order .
please rise , then , for this minute ' s silence .

The next step is to shuffle the training set, which proves to be helpful for improving the results.

python thualign/scripts/shuffle_corpus.py --corpus train.src train.tgt

The resulting files train.src.shuf and train.tgt.shuf rearrange the sentence pairs randomly.

Then we need to generate vocabulary from the training set.

python thualign/scripts/build_vocab.py train.src.shuf vocab.train.src
python thualign/scripts/build_vocab.py train.tgt.shuf vocab.train.tgt

The resulting files vocab.train.src.txt and vocab.train.tgt.txt are final source and target vocabularies used for model training.

Training

All experiments are configured via config files in thualign/configs, see Configs for more details.. We provide an example config file thualign/configs/user/example.config. You can easily use it by making three changes:

  1. change device_list, update_cycle and batch_size to match your machine configuration;

  2. change exp_dir and output to your own experiment directory

  3. change train/valid/test_input and vocab to your data paths;

When properly configured, you can use the following command to train an alignment model described in the config file

bash thualign/bin/train.sh -s thualign/configs/user/example.config

or more simply

bash thualign/bin/train.sh -s example

The configuration file is an INI file and is parsed through configparser. By adding a new section, you can easily customize some configs while keep other configs unchanged.

[DEFAULT]
...

[small_budget]
batch_size = 4500
update_cycle = 8
device_list = [0]
half = False

Use -e option to run this small_budget section

bash thualign/bin/train.sh -s example -e small_budget

You can also monitor the training process through tensorboard

tensorboard --logdir=[output]

Test

After training, the following command can be used to generate attention weights (-g), generate data for attention visualization (-v), and test its AER (-t) if test_ref is provided.

bash thualign/bin/test.sh -s [CONFIG] -e [EXP] -gvt

For example, to test the model trained with the configs in example.config

bash thualign/bin/test.sh -s example -gvt

You might get the following output

alignment-soft.txt: 14.4% (87.7%/83.5%/9467)

The alignment results (alignment.txt) along with other test results are stored in [output]/test by default.

Configs

Most of the configuration of Mask-Align is done through configuration files in thualign/configs. The model reads the basic configs first, followed by the user-defined configs.

Basic Config

Predefined configs for experiments to use.

  • base.config: basic configs for training, validation and test

  • model.config: define different models with their hyperparameters

User Config

Customized configs that must describe the following configuration and maybe other experiment-specific parameters:

  • train/valid/test_input: paths of input parallel corpuses
  • vocab: paths of vocabulary files generated from thualign/scripts/build_vocab.py
  • output: path to save the model outputs
  • model: which model to use
  • batch_size: the batch size (number of tokens) used in the training stage.
  • update_cycle: the number of iterations for updating model parameters. The default value is 1. If you have only 1 GPU and want to obtain the same translation performance with using 4 GPUs, simply set this parameter to 4. Note that the training time will also be prolonged.
  • device_list: the list of GPUs to be used in training. Use the nvidia-smi command to find unused GPUs. If the unused GPUs are gpu0 and gpu1, set this parameter as device_list=[0,1].
  • half: set this to True if you wish to use half-precision training. This will speeds up the training procedure. Make sure that you have the GPUs with half-precision support.

Here is a minimal experiment config:

### thualign/configs/user/example.config
[DEFAULT]

train_input = ['train.src', 'train.tgt']
valid_input = ['valid.src', 'valid.tgt']
vocab = ['vocab.src.txt', 'vocab.tgt.txt']
test_input = ['test.src', 'test.tgt']
test_ref = test.talp

exp_dir = exp
label = agree_deen
output = ${exp_dir}/${label}

model = mask_align

batch_size = 9000
update_cycle = 1
device_list = [0,1,2,3]
half = True

Visualization

To better understand and analyze the model, Mask-Align supports the following two types of visulizations.

Training Visualization

Add eval_plot = True in your config file to turn on visualization during training. This will plot 5 attention maps from evaluation in the tensorboard.

These packages are required for training visualization:

  • pandas
  • matplotlib
  • seaborn

Attention Visualization

Use -v in the test command to generate alignment_vizdata.pt first. It is stored in [output]/test by default. To visualize it, using this script

python thualign/scripts/visualize.py [output]/test/alignment_vizdata.pt [--port PORT]

This will start a local service that plots the attention weights for all the test sentence pairs. You can access it through a web browser.

These packages are required for training visualization:

  • remi
  • pyecharts

Contact

If you have questions, suggestions and bug reports, please email [email protected].

Owner
THUNLP-MT
Machine Translation Group, Natural Language Processing Lab at Tsinghua University (THUNLP). Please refer to https://github.com/thunlp for more NLP resources.
THUNLP-MT
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
⚖️ A Statutory Article Retrieval Dataset in French.

A Statutory Article Retrieval Dataset in French This repository contains the Belgian Statutory Article Retrieval Dataset (BSARD), as well as the code

Maastricht Law & Tech Lab 19 Nov 17, 2022
Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Sonnet finder Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet. Usage This is a Python scrip

Marcel Bollmann 11 Sep 25, 2022
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

steven.yan 121 Dec 27, 2022
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
Code repository for "It's About Time: Analog clock Reading in the Wild"

it's about time Code repository for "It's About Time: Analog clock Reading in the Wild" Packages required: pytorch (used 1.9, any reasonable version s

52 Nov 10, 2022
Espresso: A Fast End-to-End Neural Speech Recognition Toolkit

Espresso Espresso is an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning libra

Yiming Wang 919 Jan 03, 2023
Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

Raj Dabre 121 Jan 05, 2023
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022
GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning

GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning GrammarTagger is an open-source toolkit for grammatical profiling for lan

Octanove Labs 27 Jan 05, 2023
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Khalid Saifullah 37 Sep 05, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
NLTK Source

Natural Language Toolkit (NLTK) NLTK -- the Natural Language Toolkit -- is a suite of open source Python modules, data sets, and tutorials supporting

Natural Language Toolkit 11.4k Jan 04, 2023