Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Overview

Mask-Align: Self-Supervised Neural Word Alignment

This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment.

@inproceedings{chen2021maskalign,
   title={Mask-Align: Self-Supervised Neural Word Alignment},
   author={Chi Chen and Maosong Sun and Yang Liu},
   booktitle={Association for Computational Linguistics (ACL)},
   year={2021}
}

The implementation is built on top of THUMT.

Contents

Introduction

Mask-Align is a self-supervised neural word aligner. It parallelly masks out each target token and predicts it conditioned on both source and the remaining target tokens. The source token that contributes most to recovering a masked target token will be aligned to that target token.

Prerequisites

  • PyTorch
  • NLTK
  • remi *
  • pyecharts *
  • pandas *
  • matplotlib *
  • seaborn *

*: optional, only used for Visualization.

Usage

Data Preparation

To get the data used in our paper, you can follow the instructions in https://github.com/lilt/alignment-scripts.

To train an aligner with your own data, you should pre-process it yourself. Usually this includes tokenization, BPE, etc. You can find a simple guide here.

Now we have the pre-processed parallel training data (train.src, train.tgt), validation data (optional) (valid.src, valid.tgt) and test data (test.src, test.tgt). An example 3-sentence German–English parallel training corpus is:

# train.src
wiederaufnahme der sitzungsperiode
frau präsidentin , zur geschäfts @@ordnung .
ich bitte sie , sich zu einer schweigeminute zu erheben .

# train.tgt
resumption of the session
madam president , on a point of order .
please rise , then , for this minute ' s silence .

The next step is to shuffle the training set, which proves to be helpful for improving the results.

python thualign/scripts/shuffle_corpus.py --corpus train.src train.tgt

The resulting files train.src.shuf and train.tgt.shuf rearrange the sentence pairs randomly.

Then we need to generate vocabulary from the training set.

python thualign/scripts/build_vocab.py train.src.shuf vocab.train.src
python thualign/scripts/build_vocab.py train.tgt.shuf vocab.train.tgt

The resulting files vocab.train.src.txt and vocab.train.tgt.txt are final source and target vocabularies used for model training.

Training

All experiments are configured via config files in thualign/configs, see Configs for more details.. We provide an example config file thualign/configs/user/example.config. You can easily use it by making three changes:

  1. change device_list, update_cycle and batch_size to match your machine configuration;

  2. change exp_dir and output to your own experiment directory

  3. change train/valid/test_input and vocab to your data paths;

When properly configured, you can use the following command to train an alignment model described in the config file

bash thualign/bin/train.sh -s thualign/configs/user/example.config

or more simply

bash thualign/bin/train.sh -s example

The configuration file is an INI file and is parsed through configparser. By adding a new section, you can easily customize some configs while keep other configs unchanged.

[DEFAULT]
...

[small_budget]
batch_size = 4500
update_cycle = 8
device_list = [0]
half = False

Use -e option to run this small_budget section

bash thualign/bin/train.sh -s example -e small_budget

You can also monitor the training process through tensorboard

tensorboard --logdir=[output]

Test

After training, the following command can be used to generate attention weights (-g), generate data for attention visualization (-v), and test its AER (-t) if test_ref is provided.

bash thualign/bin/test.sh -s [CONFIG] -e [EXP] -gvt

For example, to test the model trained with the configs in example.config

bash thualign/bin/test.sh -s example -gvt

You might get the following output

alignment-soft.txt: 14.4% (87.7%/83.5%/9467)

The alignment results (alignment.txt) along with other test results are stored in [output]/test by default.

Configs

Most of the configuration of Mask-Align is done through configuration files in thualign/configs. The model reads the basic configs first, followed by the user-defined configs.

Basic Config

Predefined configs for experiments to use.

  • base.config: basic configs for training, validation and test

  • model.config: define different models with their hyperparameters

User Config

Customized configs that must describe the following configuration and maybe other experiment-specific parameters:

  • train/valid/test_input: paths of input parallel corpuses
  • vocab: paths of vocabulary files generated from thualign/scripts/build_vocab.py
  • output: path to save the model outputs
  • model: which model to use
  • batch_size: the batch size (number of tokens) used in the training stage.
  • update_cycle: the number of iterations for updating model parameters. The default value is 1. If you have only 1 GPU and want to obtain the same translation performance with using 4 GPUs, simply set this parameter to 4. Note that the training time will also be prolonged.
  • device_list: the list of GPUs to be used in training. Use the nvidia-smi command to find unused GPUs. If the unused GPUs are gpu0 and gpu1, set this parameter as device_list=[0,1].
  • half: set this to True if you wish to use half-precision training. This will speeds up the training procedure. Make sure that you have the GPUs with half-precision support.

Here is a minimal experiment config:

### thualign/configs/user/example.config
[DEFAULT]

train_input = ['train.src', 'train.tgt']
valid_input = ['valid.src', 'valid.tgt']
vocab = ['vocab.src.txt', 'vocab.tgt.txt']
test_input = ['test.src', 'test.tgt']
test_ref = test.talp

exp_dir = exp
label = agree_deen
output = ${exp_dir}/${label}

model = mask_align

batch_size = 9000
update_cycle = 1
device_list = [0,1,2,3]
half = True

Visualization

To better understand and analyze the model, Mask-Align supports the following two types of visulizations.

Training Visualization

Add eval_plot = True in your config file to turn on visualization during training. This will plot 5 attention maps from evaluation in the tensorboard.

These packages are required for training visualization:

  • pandas
  • matplotlib
  • seaborn

Attention Visualization

Use -v in the test command to generate alignment_vizdata.pt first. It is stored in [output]/test by default. To visualize it, using this script

python thualign/scripts/visualize.py [output]/test/alignment_vizdata.pt [--port PORT]

This will start a local service that plots the attention weights for all the test sentence pairs. You can access it through a web browser.

These packages are required for training visualization:

  • remi
  • pyecharts

Contact

If you have questions, suggestions and bug reports, please email [email protected].

Owner
THUNLP-MT
Machine Translation Group, Natural Language Processing Lab at Tsinghua University (THUNLP). Please refer to https://github.com/thunlp for more NLP resources.
THUNLP-MT
A script that automatically creates a branch name using google translation api and jira api

About google translation api와 jira api을 사용하여 자동으로 브랜치 이름을 만들어주는 스크립트 Setup 환경변수에 다음 3가지를 등록해야 한다. JIRA_USER : JIRA email (ex: hyunwook.kim 2 Dec 20, 2021

Write Alphabet, Words and Sentences with your eyes.

The-Next-Gen-AI-Eye-Writer The Eye tracking Technique has become one of the most popular techniques within the human and computer interaction era, thi

Rohan Kasabe 2 Apr 05, 2022
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
中文医疗信息处理基准CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

English | 中文说明 CBLUE AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For fur

452 Dec 30, 2022
Graph4nlp is the library for the easy use of Graph Neural Networks for NLP

Graph4NLP Graph4NLP is an easy-to-use library for R&D at the intersection of Deep Learning on Graphs and Natural Language Processing (i.e., DLG4NLP).

Graph4AI 1.5k Dec 23, 2022
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
Installation, test and evaluation of Scribosermo speech-to-text engine

Scribosermo STT Setup Scribosermo is a LGPL licensed, open-source speech recognition engine to "Train fast Speech-to-Text networks in different langua

Florian Quirin 3 Jun 20, 2022
Chinese real time voice cloning (VC) and Chinese text to speech (TTS).

Chinese real time voice cloning (VC) and Chinese text to speech (TTS). 好用的中文语音克隆兼中文语音合成系统,包含语音编码器、语音合成器、声码器和可视化模块。

Kuang Dada 6 Nov 08, 2022
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources (NAACL-2021).

Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources Description This is the repository for the paper Unifying Cross-

Sapienza NLP group 16 Sep 09, 2022
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022
Yet another Python binding for fastText

pyfasttext Warning! pyfasttext is no longer maintained: use the official Python binding from the fastText repository: https://github.com/facebookresea

Vincent Rasneur 230 Nov 16, 2022
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Microsoft 1.1k Dec 17, 2022
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023