This is Assignment1 code for the Web Data Processing System.

Overview

First Assignment - Entity Linking

Web Data Processing System Assignment 1 - 2021 - Group 26

  • Zhining Bai
  • Bowen Lyu
  • Tianshi Chen
  • Yiming Xu

Description

This is a Python program to Entity Linking by processing WARC files. We recognize entities from web pages and link them to a Knowledge Base(Wikidata). The pipeline for this program as below:

image

Read WARC

  • Use pyspark to read large-scale warc files, so the program supports parallel computing.
  • Extract text information from HTML files by using beautifulsoup.

Named entity recognition

  • Extract entities by using recognize_entities_bert model from sparknlp.

Disambiguation and NIL

We considered the popularity of the candidate page as well as the semantic similarity between the sentence where the entity is located and the candidate description to achieve Disambiguation.

  • Popularity: Calculate popularity rankings using the Elasticsearch scoring algorithm and the number of properties of the mention from the knowledge graph.
  • Sentence similarity: Measure the difference between text and description using the Levenshtein distance.

NIL: Retain results with distances < 40.

image

Prerequisites

Codes are run on the DAS cluster at /var/scratch/wdps2106/wdps_2126, result1 is a conda virtual environment that has been created. Below are the packages installed to run the assignment.

# if you want to use pip(pip for python3) to install the packages, use the following command(python version 3.8)
pip install pyspark==3.1.2
pip install spark-nlp==3.3.3
pip install beautifulsoup4
pip install python-Levenshtein
pip install elasticsearch

# if you want to use conda to install the packages, use the following command(recommended)
conda create -n 
   
     python=3.8
conda install pyspark
conda install bs4
conda install elasticsearch
pip install python-Levenshtein
pip install sparknlp

   

Run

To run the program, you can simply use the command below. The parameter Keyname is the name of page ID in WARC files such as WARC_TREC_ID. You need to declare the name of the page ID using this parameter. Be aware that the result file will be renamed as result.tsv.

sh run.sh /path/to/warc/file.warc.gz /path/to/result/ Keyname

If you use DAS cluster, you also need to add this command before running:

export OPENBLAS_NUM_THREADS=10

To check the score of the result file, use the command below.

python3 score.py /sample/annotation/file/sample.tsv /generated/result/file/result.tsv

Result

We tested our entity linking code using sample.warc.gz. Since sample_annotations.tsv only contains the entities that page_id is less than 92, our test results only output entity links with page_id <= 92. The f1 score of the sample data is 0.1122.

Metric Value
Gold 500
Predicted 480
Correct 55
Precision 0.1145
Recall 0.11
F1 Score 0.1122
You might also like...
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It

State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

Releases(wdps)
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis 왜 한국어 감정 다중분류 모델은 거의 없는 것일까?에서 시작된 프로젝트 Environment: Pytorch, Da

Donghoon Shin 3 Dec 02, 2022
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

MilaNLP 35 Sep 17, 2022
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour

edesz 1 Jan 03, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

David McClosky 64 May 08, 2022
Paddle2.x version AI-Writer

Paddle2.x 版本AI-Writer 用魔改 GPT 生成网文。Tuned GPT for novel generation.

yujun 74 Jan 04, 2023
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
IMDB film review sentiment classification based on BERT's supervised learning model.

IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.

Paris 1 Apr 17, 2022
Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Yoon Kim 43 Dec 23, 2022
Watson Natural Language Understanding and Knowledge Studio

Material de demonstração dos serviços: Watson Natural Language Understanding e Knowledge Studio Visão Geral: https://www.ibm.com/br-pt/cloud/watson-na

Vanderlei Munhoz 4 Oct 24, 2021
Repository for Project Insight: NLP as a Service

Project Insight NLP as a Service Contents Introduction Features Installation Setup and Documentation Project Details Demonstration Directory Details H

Abhishek Kumar Mishra 286 Dec 06, 2022
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
A Plover python dictionary allowing for consistent symbol input with specification of attachment and capitalisation in one stroke.

Emily's Symbol Dictionary Design This dictionary was created with the following goals in mind: Have a consistent method to type (pretty much) every sy

Emily 68 Jan 07, 2023
(ACL 2022) The source code for the paper "Towards Abstractive Grounded Summarization of Podcast Transcripts"

Towards Abstractive Grounded Summarization of Podcast Transcripts We provide the source code for the paper "Towards Abstractive Grounded Summarization

10 Jul 01, 2022