Ongoing research training transformer language models at scale, including: BERT & GPT-2

Overview

What is this fork of Megatron-LM and Megatron-DeepSpeed

This is a detached fork of https://github.com/microsoft/Megatron-DeepSpeed, which in itself is a fork of https://github.com/NVIDIA/Megatron-LM. The former integrates DeepSpeed into the original Megatron-LM code.

This fork in turn will include direct changes to the models needed for the BigScience project. This is the repo we use for this project.

In addition various code bits and lots of docs are to be found at https://github.com/bigscience-workshop/bigscience.

Please note that the rest of this page has been trimmed to only include the info relevant to the BigScience project and also updated to usage with the integrated Deepspeed. You will find the original page with all the tables and training info on Bert and T5 here.

Setup

  1. Install bigscience-workshop/Megatron-DeepSpeed
git clone https://github.com/bigscience-workshop/Megatron-DeepSpeed
cd Megatron-DeepSpeed
pip install -r requirements.txt

You can now use this repo directly by working directly from it. You don't need to install it unless you write your own scripts elsewhere that use the modules in this repo, in which case you may want to do:

pip install -e .
  1. Install apex
git clone https://github.com/NVIDIA/apex
cd apex
pip install --global-option="--cpp_ext" --global-option="--cuda_ext" --no-cache -v --disable-pip-version-check .  2>&1 | tee build.log

(on JZ it's done in a special way, see here.)

  1. Install deepspeed / the big-science branch

Then install the big-science branch of deepspeed:

git clone https://github.com/microsoft/deepspeed deepspeed-big-science
cd deepspeed-big-science
git checkout big-science
rm -rf build
TORCH_CUDA_ARCH_LIST="7.0" DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 pip install -e . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check

adjust TORCH_CUDA_ARCH_LIST="7.0" to the architecture of your NVIDIA GPU (or just remove it altogether if you are not sure how to find one).

(on JZ it's done in a special way, see here.)

  1. CUDA kernels compilation

The first time you run the training scripts several CUDA kernels will be compiled. Which means you need to have a cuda environment set up in your environment and it should match the version pytorch was built with.

Usage

After installation, there are several possible workflows. The most comprehensive is:

  1. Data preprocessing
  2. Pretraining
  3. Finetuning (Optional for zero-shot tasks)
  4. Downstream task evaluation or text generation

However, steps 1 and 2 can be replaced by using one of the pretrained models mentioned above.

We've provided several scripts for pretraining both BERT and GPT in examples directory, as well as scripts for both zero-shot and fine-tuned downstream tasks including MNLI, RACE, WikiText103, and LAMBADA evaluation. There is also a script for GPT interactive text generation.

Training

Vocab

The GPT vocab file and merge table can be downloaded directly.

Data Preprocessing

The training data requires preprocessing. First, place your training data in a loose json format, with one json containing a text sample per line. For example:

{"src": "www.nvidia.com", "text": "The quick brown fox", "type": "Eng", "id": "0", "title": "First Part"}
{"src": "The Internet", "text": "jumps over the lazy dog", "type": "Eng", "id": "42", "title": "Second Part"}

The name of the text field of the json can be changed by using the --json-key flag in preprocess_data.py The other metadata are optional and are not used in training.

The loose json is then processed into a binary format for training. To convert the json into mmap, cached index file, or the lazy loader format use preprocess_data.py. Set the --dataset-impl flag to mmap, cached, or lazy, respectively (default is mmap).

An example script to prepare data for GPT training is:

python tools/preprocess_data.py \
    --input my-corpus.json \
    --output-prefix my-gpt2 \
    --vocab gpt2-vocab.json \
    --dataset-impl mmap \
    --tokenizer-type GPT2BPETokenizer \
    --merge-file gpt2-merges.txt \
    --append-eod \
    --workers 8

The output will be two files named, in this case, my-gpt2_text_document.bin and my-gpt2_text_document.idx. The --data-path specified in later GPT training is the full path and new filename, but without the file extension.

Further command line arguments are described in the source file preprocess_data.py.

You can also use tools/preprocess_data_many_cores.py in the case of high amount of cpu cores available. Typically in JZ setup where cpu nodes have up to 40 physical cpu cores, you should run this script with around 60 workers instead of the tools/preprocess_data.py. The same command line arguments are available.

Merging datasets

Sometimes it's hard to work on a very large dataset at once, so one can pre-process it in chunks and then merge those datasets into a single combined indexed dataset. Here is an example:

python tools/merge_preprocessed_data.py \
    --datasets \
    meg-gpt2-oscar-en-500-p1_text_document \
    meg-gpt2-oscar-en-500-p2_text_document \
    meg-gpt2-oscar-en-500-p3_text_document \
    --output-prefix meg-gpt2_oscar_text_document

Quick pre-processing to start training with

Here is how you can get ready to train quickly, using a 1GB 79K-record jsonl dataset.

wget https://huggingface.co/bigscience/misc-test-data/resolve/main/stas/oscar-1GB.jsonl.xz
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt
xz -d oscar-1GB.jsonl.xz
python tools/preprocess_data.py \
    --input oscar-1GB.jsonl \
    --output-prefix my-gpt2 \
    --vocab gpt2-vocab.json \
    --dataset-impl mmap \
    --tokenizer-type GPT2BPETokenizer \
    --merge-file gpt2-merges.txt \
    --append-eod \
    --workers 8

GPT Pretraining

note: you may want to skip to the next section, since it describes what we actually use at the moment.

The examples/pretrain_gpt.sh script runs single GPU 345M parameter GPT pretraining. Debugging is the primary use for single GPU training, as the code base and command line arguments are optimized for highly distributed training. Most of the arguments are fairly self-explanatory. By default, the learning rate decays linearly over the training iterations starting at --lr to a minimum set by --min-lr over --lr-decay-iters iterations. The fraction of training iterations used for warmup is set by --lr-warmup-fraction. While this is single GPU training, the batch size specified by --micro-batch-size is a single forward-backward path batch-size and the code will perform gradient accumulation steps until it reaches global-batch-size whcih is the batch size per iteration.

The data is partitioned into a 949:50:1 ratio for training/validation/test sets (default is 969:30:1). This partitioning happens on the fly, but is consistent across runs with the same random seed (1234 by default, or specified manually with --seed). We use train-iters as the training iterations requested. Alternatively, one can provide --train-samples which is total number of samples to train on. If this option is present, then instead of providing --lr-decay-iters, one will need to provide --lr-decay-samples.

The logging, checkpoint-saving, and evaluation intervals are specified. Checkpointing the activations facilitates the training of larger models and/or batches. Note that the --data-path now includes the additional _text_sentence suffix added in preprocessing, but does not include the file extensions.

The tokenization scheme used is BPE (which requires a merge table and a json vocabulary file), the model architecture allows for longer sequences (note that the max position embedding must be greater than or equal to the maximum sequence length), and the --lr-decay-style has been set to cosine decay. Note that the --data-path now includes the additional _text_document suffix added in preprocessing, but does not include the file extensions.

However, as you will see below you will learn that DeepSpeed requires a distributed enviroment even with a single GPU. Therefore, instead refer to pretrain_gpt_single_node.sh, which will work with this repo.

CHECKPOINT_PATH=checkpoints/gpt2
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
DATA_PATH=my-gpt2_text_document

GPT_ARGS=" \
    --num-layers 24 \
    --hidden-size 1024 \
    --num-attention-heads 16 \
    --seq-length 1024 \
    --max-position-embeddings 1024 \
    --micro-batch-size 4 \
    --global-batch-size 8 \
    --lr 0.00015 \
    --train-iters 500000 \
    --lr-decay-iters 320000 \
    --lr-decay-style cosine \
    --vocab-file $VOCAB_FILE \
    --merge-file $MERGE_FILE \
    --lr-warmup-fraction .01 \
    --fp16 \
    "

OUTPUT_ARGS=" \
    --log-interval 10 \
    --save-interval 500 \
    --eval-interval 100 \
    --eval-iters 10 \
    --checkpoint-activations \
    "

DATA_ARGS=" \
    --save $CHECKPOINT_PATH \
    --load $CHECKPOINT_PATH \
    --data-path $DATA_PATH \
    "

CMD="pretrain_gpt.py $GPT_ARGS $OUTPUT_ARGS $DATA_ARGS"

N_GPUS=1

LAUNCHER="deepspeed --num_gpus $N_GPUS"

$LAUNCHER $CMD

Note, we replaced python with deepspeed --num_gpus 1. For multi-gpu training update --num_gpus to the number of GPUs you have.

For multi-node training you will either need to create a hostfile which defines all the nodes as explained here or in the SLURM environment it might not work and you will need to use:

CMD=<as above>

MASTER_ADDR=`perl -le '$_=$ENV{"SLURM_JOB_NODELIST"}; s/,.*//; s/-.*//; s/\[//; print'`
MASTER_PORT=6000
GPUS_PER_NODE=4
NNODES=16

export LAUNCHER="python -u -m torch.distributed.launch \
    --nproc_per_node $GPUS_PER_NODE \
    --nnodes $NNODES \
    --master_addr $MASTER_ADDR \
    --master_port $MASTER_PORT \
    "

srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD'

For a single GPU the other approach is to emulate distributed with:

MASTER_ADDR=localhost MASTER_PORT=9994 RANK=0 LOCAL_RANK=0 python pretrain_gpt.py ...

Further command line arguments are described in the source file arguments.py.

Deepspeed PP and ZeRO-DP

To allow further flexibility we are using Deepspeed PP (pipeline parallelism) and ZeRO-DP along with Megatron normal functionality. That is we replace Megatron's PP with Deepspeed's PP, and we use ZERO-DP for DP.

It's similar to the normal Megatron-LM launcher, plus it has a deepspeed config file and a few params:

CHECKPOINT_PATH=checkpoints/gpt2
VOCAB_FILE=data/gpt2-vocab.json
MERGE_FILE=data/gpt2-merges.txt
DATA_PATH=data/meg-gpt2_oscar-combined_text_document
TENSORBOARD_PATH=output_dir/tensorboard
CODECARBON_PATH=output_dir/codecarbon

MICRO_BATCH_SIZE=1
GLOBAL_BATCH_SIZE=16
TP_SIZE=1
PP_SIZE=1

N_GPUS=2
SAVE_INTERVAL=100

#    --train-samples 10_000 \
#    --exit-interval $EXIT_INTERVAL \

#    --exit-interval 100 \
GPT_ARGS=" \
    --num-layers 2 \
    --hidden-size 64 \
    --num-attention-heads 2 \
    --seq-length 1024 \
    --max-position-embeddings 1024 \
    --micro-batch-size $MICRO_BATCH_SIZE \
    --rampup-batch-size 2 2 1_000 \
    --global-batch-size $GLOBAL_BATCH_SIZE \
    --train-samples 100 \
    --optimizer adam \
    --adam-beta1 0.9 \
    --adam-beta2 0.95 \
    --adam-eps 1e-8 \
    --lr 1e-4 \
    --lr-warmup-samples 5 \
    --clip-grad 1.0 \
    --weight-decay 1e-1 \
    --vocab-file $VOCAB_FILE \
    --merge-file $MERGE_FILE \
    --fp16 \
    "
#    --train-iters 500 \

OUTPUT_ARGS=" \
    --log-interval 10 \
    --save-interval $SAVE_INTERVAL \
    --eval-interval 100 \
    --eval-iters 10 \
    --checkpoint-activations \
    "

#    --codecarbon-dir $CODECARBON_PATH \
DATA_ARGS=" \
    --save $CHECKPOINT_PATH \
    --load $CHECKPOINT_PATH \
    --data-path $DATA_PATH \
    --tensorboard-dir $TENSORBOARD_PATH \
    --tensorboard-queue-size 5 \
    --log-timers-to-tensorboard \
    --log-batch-size-to-tensorboard \
    --log-validation-ppl-to-tensorboard \
    "


ZERO_STAGE=1

config_json="./ds_config.json"

# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
  "train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
  "train_batch_size": $GLOBAL_BATCH_SIZE,
  "gradient_clipping": 1.0,
  "zero_optimization": {
    "stage": $ZERO_STAGE
  },
  "fp16": {
    "enabled": true,
    "loss_scale": 0,
    "loss_scale_window": 500,
    "hysteresis": 2,
    "min_loss_scale": 1,
    "initial_scale_power": 12
  },
  "steps_per_print": 2000,
  "wall_clock_breakdown": false
}
EOT


DEEPSPEED_ARGS=" \
    --deepspeed \
    --deepspeed_config ${config_json} \
    --zero-stage ${ZERO_STAGE} \
    --deepspeed-activation-checkpointing \
    "

ALL_ARGS="$GPT_ARGS $OUTPUT_ARGS $DATA_ARGS $DEEPSPEED_ARGS"

# if you can't stand pt-1.9 launcher noise
export LOGLEVEL=WARNING

LAUNCHER="deepspeed --num_gpus $N_GPUS"
export CMD=" \
    $LAUNCHER pretrain_gpt.py \
    --tensor-model-parallel-size $TP_SIZE \
    --pipeline-model-parallel-size $PP_SIZE \
    --distributed-backend nccl \
    $ALL_ARGS \
    "

echo $CMD

$CMD

on JZ we use a different launching command, see for example the end of tr1-13B-round1.slurm, but this is also a good fully functional script that you can use. Except it's written for SLURM environment.

Using any pretrained tokenizer

Thanks to @sbmaruf, any HF pretrained tokenizer may be used instead of the Megatron-provided BERT/GPT/T5 tokenizers. You'll need to run preprocessing yourself (tools/preprocess_data.py), using tokenizer-type=PretrainedFromHF and tokenizer-name-or-path=<your_tokenizer>. For example, python tools/preprocess_data.py --input ~/c4_en_train.jsonl --output-prefix c4_en_train --dataset-impl mmap --tokenizer-type PretrainedFromHF --tokenizer-name-or-path t5-small --workers 30 --append-eod

Distributed Pretraining

The examples/pretrain_{bert,gpt,t5}_distributed.sh scripts use the PyTorch distributed launcher for distributed training. As such, multi-node training can be achieved by properly setting environment variables and using init_method='env://' in the launcher. See the official PyTorch documentation for further description of these environment variables. By default, multi-node training uses the nccl distributed backend. A simple set of additional arguments and the use of the PyTorch distributed module with the Python flag -m torch.distributed.launch, detailed below, are the only additional requirements to adopt distributed training.

We use two types of parallelism: data and model parallelism. We facilitate two distributed data parallel implementations: a simple one of our own that performs gradient all-reduce at the end of back propagation step, and Torch's distributed data parallel wrapper that overlaps gradient reduction with back propagation computation. To switch between these two options use --DDP-impl local or --DDP-impl torch, respectively. As expected, Torch distributed data parallelism is more efficient at larger model sizes. For example, for the 8.3 billion parameters model running on 512 GPUs, the scaling increases from 60% to 76% when Torch's distributed data parallel is used. However, the overlapping method requires more memory and for some configurations (e.g., 2.5 billion parameters using 2-way model parallel and 1.2 billion parameters with no model parallel) can make the overall training slower as a result. We empirically found that using a smaller model in those cases improves the training time.

Second, we developed a simple and efficient two-dimensional model-parallel approach. To use tensor model parallelism (splitting execution of a single transformer module over multiple GPUs), add the --tensor-model-parallel-size flag to specify the number of GPUs among which to split the model, along with the arguments passed to the distributed launcher as mentioned above. To use pipeline model parallelism (sharding the transformer modules into stages with an equal number of transformer modules on each stage, and then pipelining execution by breaking the batch into smaller microbatches), use the --pipeline-model-parallel-size flag to specify the number of stages to split the model into (e.g., splitting a model with 24 transformer layers across 4 stages would mean each stage gets 6 transformer layers each).

We have examples of how to use these two different forms of model parallelism the example scripts ending in distributed_with_mp.sh, note that pipeline parallelism is not currently supported in the T5 model:

Other than these minor changes, the distributed training is identical to the training on a single GPU.

Distributed training:

see the details on how to do distributed training with the deepspeed launcher a few sections up XXX: The following needs to be updated:

WORLD_SIZE=8
TENSOR_MP_SIZE=2
PIPELINE_MP_SIZE=2

DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \
    --nnodes 1 \
    --node_rank 0 \
    --master_addr localhost \
    --master_port 6000"

CHECKPOINT_PATH=&#60;same as above&#62;
VOCAB_FILE=&#60;same as above&#62;
DATA_PATH=&#60;same as above&#62;
MODEL_ARGS=&#60;same as above&#62;
OUTPUT_ARGS=&#60;same as above&#62;

python -m torch.distributed.launch $DISTRIBUTED_ARGS ./pretrain_<model>.py \
    $MODEL_ARGS \
    $OUTPUT_ARGS \
    --save $CHECKPOINT_PATH \
    --load $CHECKPOINT_PATH \
    --data-path $DATA_PATH \
    --tensor-model-parallel-size $TENSOR_MP_SIZE \
    --pipeline-model-parallel-size $PIPELINE_MP_SIZE \
    --DDP-impl torch

GPT-3 Example

In examples/pretrain_gpt3_175B.sh we have provided an example of how to configure Megatron to run GPT-3 with 175 billion parameters on 1024 GPUs. The script is designed for slurm with pyxis plugin but can be easily adopted to any other scheduler. It uses 8-way and 16-way tensor and pipeline parallelism, respectively. With options global-batch-size 1536 and rampup-batch-size 16 16 5859375, the training will start with global batch size 16 and linearly increase the global batch size to 1536 over 5,859,375 samples with incrmeental steps 16. The training dataset can be either a single set or a multiple datasets combined with a set of weights.

With full global batch size of 1536 on 1024 A100 GPUs, each iteration takes around 32 seconds resulting in 138 teraFLOPs per GPU which is 44% of the theoretical peak FLOPs.

Evaluation and Tasks

We provide several command line arguments, detailed in the scripts listed below, to handle various zero-shot and fine-tuned downstream tasks. However, you can also finetune your model from a pretrained checkpoint on other corpora as desired. To do so, simply add the --finetune flag and adjust the input files and training parameters within the original training script. The iteration count will be reset to zero, and the optimizer and internal state will be reinitialized. If the fine-tuning is interrupted for any reason, be sure to remove the --finetune flag before continuing, otherwise the training will start again from the beginning.

Because evaluation requires substantially less memory than training, it may be advantageous to merge a model trained in parallel for use on a single GPU in downstream tasks. The following script accomplishes this. Currently only tensor model parallelism is supported on input and pipeline model parallelsim on the output. This example reads in a model with 2-way tensor model parallelism and writes out a model with 2-way pipeline model parallelism.

TENSOR_MODEL_PARALLEL_SIZE=2
TARGET_PIPELINE_MODEL_PARALLEL_SIZE=2

VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m

WORLD_SIZE=$TENSOR_MODEL_PARALLEL_SIZE python tools/merge_mp_partitions.py \
    --model-type BERT \
    --tensor-model-parallel-size $TENSOR_MODEL_PARALLEL_SIZE \
    --pipeline-model-parallel-size 1 \
    --target-pipeline-model-parallel-size $TARGET_PIPELINE_MODEL_PARALLEL_SIZE \
    --tokenizer-type BertWordPieceLowerCase \
    --vocab-file $VOCAB_FILE \
    --num-layers 24 \
    --hidden-size 1024 \
    --num-attention-heads 16 \
    --seq-length 512 \
    --max-position-embeddings 512 \
    --load $CHECKPOINT_PATH
    --save $CHECKPOINT_PATH/merged

Several downstream tasks are described for both GPT and BERT models below. They can be run in distributed and model parallel modes with the same changes used in the training scripts.

GPT Text Generation

bash examples/generate_text.sh

We generate text samples using largely the GPT pretraining script. Few changes need to make, such as we need to provide the path to the pretrained checkpoint, the length of the output samples, whether to generate texts unconditionally (--num-samples to denote how many samples to generate) or conditional (need to pass --sample-input-file <filename> where each line of the file will be used as the conditional texts). There are few optional parameters to play, e.g. top-k, top-p, or greedy (set top-k and top-p to 0) sampling..

CHECKPOINT_PATH=checkpoints/gpt2_345m
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
GPT_ARGS=&#60;same as those in <a href="#gpt-pretraining">GPT pretraining</a> above&#62;

MAX_OUTPUT_SEQUENCE_LENGTH=1024
TEMPERATURE=1.0
TOP_P=0.9
NUMBER_OF_SAMPLES=2
OUTPUT_FILE=samples.json

python tools/generate_samples_gpt.py \
    $GPT_ARGS \
    --load $CHECKPOINT_PATH \
    --out-seq-length $MAX_OUTPUT_SEQUENCE_LENGTH \
    --temperature $TEMPERATURE \
    --genfile $OUTPUT_FILE \
    --num-samples $NUMBER_OF_SAMPLES \
    --top_p $TOP_P \
    --recompute

GPT Evaluation

We include example scripts for GPT evaluation on WikiText perplexity evaluation and LAMBADA Cloze accuracy.

WikiText Perplexity Evaluation

For even comparison with prior works, we evaluate perplexity on the word-level WikiText-103 test dataset, and appropriately compute perplexity given the change in tokens when using our subword tokenizer.

We use the following command to run WikiText-103 evaluation on a 345M parameter model.

TASK="WIKITEXT103"

VALID_DATA=&#60;wikitext path&#62;.txt
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m

COMMON_TASK_ARGS=" \
    --num-layers 24 \
    --hidden-size 1024 \
    --num-attention-heads 16 \
    --seq-length 1024 \
    --max-position-embeddings 1024 \
    --fp16 \
    --vocab-file $VOCAB_FILE"

python tasks/main.py \
    --task $TASK \
    $COMMON_TASK_ARGS \
    --valid-data $VALID_DATA \
    --tokenizer-type GPT2BPETokenizer \
    --merge-file $MERGE_FILE \
    --load $CHECKPOINT_PATH \
    --micro-batch-size 8 \
    --checkpoint-activations \
    --log-interval 10 \
    --no-load-optim \
    --no-load-rng
Owner
BigScience Workshop
Research workshop on large language models - The Summer of Language Models 21
BigScience Workshop
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 408 Dec 29, 2022
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Multispeaker & Emotional TTS based on Tacotron 2 and Waveglow

This Repository contains a sample code for Tacotron 2, WaveGlow with multi-speaker, emotion embeddings together with a script for data preprocessing.

Ivan Didur 106 Jan 01, 2023
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
A 30000+ Chinese MRC dataset - Delta Reading Comprehension Dataset

Delta Reading Comprehension Dataset 台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 本資料集期望成為適用於遷移學習之標準中文閱讀理解資料集。 本資料集從2,108篇

272 Dec 15, 2022
This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

This repo is to provide a list of literature regarding Deep Learning on Graphs for NLP

Graph4AI 230 Nov 22, 2022
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021
Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

Dirk Neuhäuser 4 Apr 06, 2022
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Sergio Burdisso 285 Jan 02, 2023
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which

Clova AI Research 94 Dec 30, 2022
An extensive UI tool built using new data scraped from BBC News

BBC-News-Analyzer An extensive UI tool built using new data scraped from BBC New

Antoreep Jana 1 Dec 31, 2021
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognit

SpeechBrain 5.1k Jan 09, 2023
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva

Yunxiao Zhao 5 Nov 04, 2022