Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

Overview

ProphetNet-X

  1. This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model called ProphetNet for sequence-to-sequence learning with a novel self-supervised objective called future n-gram prediction.

  2. We have released the ProphetNet baselines for GLGE benchmark (A New General Language Generation Evaluation Benchmark) in here. Have a try! :)

  3. We provide ProphetNet-X family models for Chinses(ProphetNet-Zh), Multi-lingual(ProphetNet-Multi), English open domain dialog(ProphetNet-Dialog), Chinese open domain dialog(ProphetNet-Dialog-Zh), code generation(ProphetNet-Code). The details are described in ProphetNet-X paper.

This repo is still developing, feel free to report bugs and we will fix them ~

What's new

ProphetNet-X models are released!

Try new ProphetNet pretrained models for Chinese, English Dialog, Chinese Dialog, Multi-lingual, and Code Generation.

Different ProphetNet-X models have the only difference of the vocabulary file. Simply modify one model file and you can evaluate your idea with all the pretrained models and finetuning scripts!

Future updates

  1. ProphetNet pretrained models for bio-medical text.
  2. ProphetNet pretrained models for protein.
  3. New ProphetNet models for long document modeling.
  4. New algorithms for Transformer/ProphetNet to reduce inference latency with no hurt to the results.
  5. New ProphetNet models for non-auto-regressive generation.
  6. For Natural Language Understanding tasks.

Dependency

  • pip install torch==1.3.0
  • pip install fairseq==v0.9.0
  • pip install tensorboardX==1.7

Pre-trained Models

We have released the following checkpoints for pre-trained models as described in the paper of ProphetNet-X(appear soon).

ProphetNet-X is based on ProphetNet, which also serves the ProphetNet-En model.

Recommended Checkpoints:

Expired Checkpoints:

How to use

The procedure includes 1) Tokenize, 2) Binarize, 3) Finetune, 4) Inference.
ProphetNet is implemented on base of Fairseq, which you can refer to Fairseq Mannual.

For all the ProphetNet-X models, the only difference is the dictionary, which means different Tokenizers should be used.

We take ProphetNet-En for example:

Tokenize. Prepare your train.src, train.tgt, and valid, test sets. Input and output of one sample are placed in the .src and .tgt file with one line.
Use bert-uncased tokenizer to tokenize your data into word piece.

from transformers import BertTokenizer


def bert_uncased_tokenize(fin, fout):
    fin = open(fin, 'r', encoding='utf-8')
    fout = open(fout, 'w', encoding='utf-8')
    tok = BertTokenizer.from_pretrained('bert-base-uncased')
    for line in fin:
        word_pieces = tok.tokenize(line.strip())
        new_line = " ".join(word_pieces)
        fout.write('{}\n'.format(new_line))
bert_uncased_tokenize('train.src', 'tokenized_train.src')
bert_uncased_tokenize('train.tgt', 'tokenized_train.tgt')
bert_uncased_tokenize('valid.src', 'tokenized_valid.src')
bert_uncased_tokenize('valid.tgt', 'tokenized_valid.tgt')
bert_uncased_tokenize('test.src', 'tokenized_test.src')
bert_uncased_tokenize('test.tgt', 'tokenized_test.tgt')

Binirize it with fairseq-preprocess

fairseq-preprocess \
--user-dir prophetnet \
--task translation_prophetnet \
--source-lang src --target-lang tgt \
--trainpref tokenized_train --validpref tokenized_valid --testpref tokenized_test \
--destdir processed --srcdict vocab.txt --tgtdict vocab.txt \
--workers 20

Fine tune with fairseq-train.
--disable-ngram-loss:only keep the next first token loss.
--ngram: number of future tokens to predict. Provided pretrained checkpoint predicts 2 future tokens, and you should set it as 2 to be consistent.
If your device does not support float16, remove --fp16.

DATA_DIR=processed
USER_DIR=./prophetnet
ARCH=ngram_transformer_prophet_large
CRITERION=ngram_language_loss
SAVE_DIR=./model
TENSORBOARD_LOGDIR=./logs
PRETRAINED_MODEL=pretrained_checkpoints/prophetnet_en.pt

fairseq-train \
--fp16 \
--user-dir $USER_DIR --task translation_prophetnet --arch $ARCH \
--optimizer adam --adam-betas '(0.9, 0.999)' --clip-norm 0.1 \
--lr 0.00001 --min-lr 1e-09 \
--lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 --warmup-updates 1000 \
--dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
--criterion $CRITERION --label-smoothing 0.1 \
--update-freq 1  --max-tokens 1400 --max-sentences 7 \
--num-workers 4 \
--load-from-pretrained-model $PRETRAINED_MODEL \
--ddp-backend=no_c10d --max-epoch 10 \
--max-source-positions 512 --max-target-positions 512 \
--skip-invalid-size-inputs-valid-test \
--save-dir $SAVE_DIR \
--keep-last-epochs 10 \
--tensorboard-logdir $TENSORBOARD_LOGDIR \
$DATA_DIR

Inference with fairseq-generate to generate targets for given processed test files. Or you can fairseq-interactive to generate answers for your typed-in text (which should also been tokenized).

BEAM=5
LENPEN=1.5
CHECK_POINT=./model/checkpoint5.pt
TEMP_FILE=fairseq_outputs.txt
OUTPUT_FILE=sorted_outputs.txt

fairseq-generate processed --path $CHECK_POINT --user-dir prophetnet --task translation_prophetnet --batch-size 80 --gen-subset test --beam $BEAM --num-workers 4 --no-repeat-ngram-size 3 --lenpen $LENPEN 2>&1 > $TEMP_FILE
grep ^H $TEMP_FILE | cut -c 3- | sort -n | cut -f3- | sed "s/ ##//g" > $OUTPUT_FILE

TIPS:

If you met problems to run fairseq-preprocess, fairseq-train and other commands, or if you want to modify the workflow/inference pipeline, it's a good choice to download fairseq git repo, checkout v0.9.0, and merge our codes.
Then, modify their preprocess.py, train.py or generate.py, to run your new pipeline.

Repo Reference

This repo is partially referred to Fairseq-v0.9.0 and MASS.

How to Cite

If you extend or use this work, please cite the paper where it was introduced:

@inproceedings{qi2020prophetnet,
  title={Prophetnet: Predicting future n-gram for sequence-to-sequence pre-training},
  author={Qi, Weizhen and Yan, Yu and Gong, Yeyun and Liu, Dayiheng and Duan, Nan and Chen, Jiusheng and Zhang, Ruofei and Zhou, Ming},
  booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings},
  pages={2401--2410},
  year={2020}
}
@article{qi2021prophetnet,
  title={ProphetNet-X: Large-Scale Pre-training Models for English, Chinese, Multi-lingual, Dialog, and Code Generation},
  author={Qi, Weizhen and Gong, Yeyun and Yan, Yu and Xu, Can and Yao, Bolun and Zhou, Bartuer and Cheng, Biao and Jiang, Daxin and Chen, Jiusheng and Zhang, Ruofei and others},
  journal={arXiv preprint arXiv:2104.08006},
  year={2021}
}

Microsoft Open Source Code of Conduct

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
Simple bots or Simbots is a library designed to create simple bots using the power of python. This library utilises Intent, Entity, Relation and Context model to create bots .

Simple bots or Simbots is a library designed to create simple chat bots using the power of python. This library utilises Intent, Entity, Relation and

14 Dec 15, 2021
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Programme de chiffrement et de déchiffrement inverse d'un message en python3.

Chiffrement Inverse En Python3 Programme de chiffrement et de déchiffrement inverse d'un message en python3. Explication du chiffrement inverse avec c

Malik Makkes 2 Mar 26, 2022
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Sentiment Analysis Project using Count Vectorizer and TF-IDF Vectorizer

Sentiment Analysis Project This project contains two sentiment analysis programs for Hotel Reviews using a Hotel Reviews dataset from Datafiniti. The

Simran Farrukh 0 Mar 28, 2022
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
Snowball compiler and stemming algorithms

Snowball is a small string processing language for creating stemming algorithms for use in Information Retrieval, plus a collection of stemming algori

Snowball Stemming language and algorithms 613 Jan 07, 2023
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022
Code for hyperboloid embeddings for knowledge graph entities

Implementation for the papers: Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao,

30 Dec 10, 2022
The (extremely) naive sentiment classification function based on NBSVM trained on wisesight_sentiment

thai_sentiment The naive sentiment classification function based on NBSVM trained on wisesight_sentiment วิธีติดตั้ง pip install thai_sentiment==0.1.3

Charin 7 Dec 08, 2022
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.

RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB

106 Nov 28, 2022
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
Chinese version of GPT2 training code, using BERT tokenizer.

GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository

Zeyao Du 5.6k Jan 04, 2023
Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

CvarAdversarialRL Official code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning". Initial setup Create a virtual

Mathieu Godbout 1 Nov 19, 2021
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022