ADCS - Automatic Defect Classification System (ADCS) for SSMC

Related tags

Text Data & NLPADCS
Overview

Table of Contents

  1. Table of Contents
  2. ADCS Overview
  3. System Design
  4. Full Program Settings
  5. Abbreviations Guide

ADCS Overview

Automatic Defect Classification System (ADCS) for FS, BS & EN Model Deployment

By: Tam Zher Min
Email: [email protected]

Summary

This is an indepently architected sequential system (similar to AXI recipes), threaded alongside a Tkinter GUI. It can automatically classify and sort wafer image scans locally for SSMC and can also train new machine learning models. Total ~2000 LOC (lines of code). Run the ADCS.vbs file to start.

Operator's Guide

Slides for operators can be found in the /ADCS/notes/guides folder or through this link. This guide is for operators looking to check the wafer lots with defects and for how to sort the wafer scans after they are classified by the ADCS.

Demo

Figma Design Mockup

ADCS Demo


System Design

System Logic

This is a full-fledged system that I planned and wrote every single line myself during my 4-month internship at SSMC (AUG 23 '21 — JAN 07 '22). This system deploys 2 CNN models locally (up to 3 needed) and performs inference on all images found from continuously polling the folder where all the wafer scans are transferred to.

The system also needs to parse through a weird file format to extract relevant information. This file is also required to be edited because SSMC's software can only understand this format. The way it is parsed is a little hacky and not 100% fool-proof but because it does not have a fixed format, there are no easy ways around it.

The Tkinter GUI was very challenging to code because UI systems are usually very finnicky. However, I managed to make it work, allowing users to change settings and logging to the GUI with a queue and using threading to run the production or training mode separate from the main Tkinter GUI thread.

All system design logic, flow, structure and considerations were by me — good in that I managed to produce something of this scale alone, bad in that I am not sure if these are the best practices or if I had missed out on any glaring problems; but I did what I could.

Training Mode

Take note, for training mode, the "Balanced no. of Samples per Class" value is important. You should derive this number by looking at the number of images you have for each class. It should be more than the number of samples in each class but lower than the most majority class.

For example, if the chipping class has only 30 images while the stain, scratch and whitedot classes have 100 images each and the AOK class has 1000 images, then you should pick between a minimum of 100 to a maximum of 1000. A good number might be 300 for this case. You can refer to the table below to get a sensing.

Hence, it heavily depends on the number of samples you have for training. As more images get sorted into the trainval folder for future retraining, this value should increase over time, otherwise you are not fully utilising the images to train the models.

eg. aok chipping scratch stain whitedot # RANGE # # INPUT #
1. 400 10 20 40 20 40-400 100
2. 1000 30 100 150 200 200-1000 300
3. 800 100 200 150 75 200-800 400

Production System Flow

  1. AXI scans wafers and generates FBE images
  2. KLA files and images fed into ADC drive's "new" directory (dir)
  3. ADCS continuously polls "new" dir for KLA files
  4. If KLA files found, start model inference; else, poll again after some wait time
  5. Model Inference
    1. Reads oldest KLA file and stores relevant information into "wafer" data structures
    2. Checks if filenames referenced in KLA file can be found in the "new" dir
    3. If all found or after timeout, feed FS/BS/EN images into their respective models
    4. FBE models classify images and modify the KLA file's CLASSNUMBERs to the predictions
    5. Results will also be saved to CSV (Excel) files for future reference
    6. Move KLA file and images to ADC drive's "old" directory and also copy them to K drive
    7. Predicted files in "unsorted" folder require manual sorting for future retraining
  6. Repeat

Folder Structure (Critical Files Only)

Do follow this folder structure to ensure reproducibility

[K drive]                   // modified KLA file and images copied here after inference
[ADC drive]                 // houses all wafer data and ADCS application code
│
├── /data                   // stores all KLA files and images from AXI
│   ├── /new                // unpredicted lots
│   └── /old                // predicted lots for backup and retraining
│       ├── /backside       // test/trainval/unsorted folders will have folders for all 5 classes
│       │    ├── /test      // manually sorted images for model testing to simulate new images
│       │    ├── /trainval  // manually sorted images for model training and validation
│       │    └── /unsorted  // predicted images to be sorted into /trainval for future retraining
│       │        ├── /aok
│       │        ├── /chipping
│       │        ├── /scratch
│       │        ├── /stain
│       │        └── /whitedot
│       ├── /edgenormal     // test/trainval/unsorted folders will have folders for all 2 classes
│       │    ├── /test
│       │    ├── /trainval
│       │    └── /unsorted
│       │        ├── /aok
│       │        └── /chipping
│       ├── /frontside      // any frontside scans found will be backed up here
│       └── /unclassified   // all ignored defect codes, eg. edgetop (176) and wafer maps (172)
│
└── /ADCS                   // the Automatic Defect Classification System
    ├── /assets             // miscellaneous files
    │   ├── icon.ico        // wafer icon found online
    │   ├── requirements.txt// necessary python libraries and versions
    │   └── run.bat         // batch file that runs main.py using specified python.exe file
    ├── /models             // trained FBE .h5 tensorflow models
    │   ├── /backside
    │   ├── /edgenormal
    │   └── /frontside
    ├── /results            // FBE predictions in CSV for production and training modes
    │   ├── /production
    │   │   ├── /backside
    │   │   ├── /edgenormal
    │   │   └── /frontside
    │   └── /training
    │       ├── /backside
    │       ├── /edgenormal
    │       └── /frontside
    ├── /src                // helper modules for ADCS in OOP style
    │   ├── adcs_modes.py   // script file with the 2 modes chosen in the GUI
    │   ├── be_trainer.py   // model training code for backside and edgenormal models
    │   ├── kla_reader.py   // code to parse and edit KLA files
    │   └── predictor.py    // model prediction code generic for FBE models
    │
    ├── *ADCS.vbs           // starts the ADCS app
    ├── debug.log           // log file of the latest run of main.py for debugging
    ├── main.py             // python script of the ADCS GUI to START/STOP
    ├── README.md           // this user guide text file you're reading; open in notepad
    └── settings.yaml       // config file for users to easily change settings and modes

Full Program Settings

Below are the descriptions for all of the settings found in the settings.yaml file. They allow users to change advanced settings for the code outside of the GUI such as the delay times and whether to turn off predictions for front/back/edge, etc.

The descriptions below help users understand what each setting does in a readable manner because the actual settings.yaml file is automatically generated in alphabetical order.

Note, there is technically no need to change anything in the settings.yaml file. Also note that all settings are case-sensitive. You can read more about the YAML syntax here.

Understanding the Descriptions

setting_name: [option A / option B] (default=x)
    # description

The setting's name will be before the colon followed by the available options in square brackets and the recommended default values in round brackets. The next indented line will be a short description of the setting. However, in the actual settings.yaml file, you would just write:

setting_name: setting_value

All Available Settings

ADCS Mode

adcs_mode: [PRODUCTION / TRAINING] (default=PRODUCTION)
    # either production (classification) or training mode

Folder Locations

adc_drive_new:
    # folder where all new AXI scans are transferred to
adc_drive_old:
    # folder where all old predicted wafer lots and images are stored for backup
k_drive:
    # folder where Klarity Defect finds all KLA files and wafer scans

Pause Times

pause_if_no_kla: (default=30)
    # long pause time in seconds in between checking cycles if no KLA files found
pause_if_kla: (default=5)
    # short pause time in seconds in between checking cycles if there are KLA files

times_to_find_imgs: (default=3)
    # no. of times to try and find images referenced in KLA file
pause_to_find_imgs: (default=10)
    # pause time in seconds to try and find the images referenced in KLA file

Model Configs

BATCH_SIZE: (default=8)
    # no. of images to classify at a time, higher requires more RAM
CONF_THRESHOLD: [0 - 100] (default=95)
    # min. % confidence threshold to clear to be considered confident

BS Predictor Configs

BS Original Code: [174] AVI_Backside Defect

bs_model:
    # specific model to use, leave empty to use latest model
bs_defect_mapping: # correct KLA defect codes for BS defects
    aok: 0         # Unclassified
    chipping: 188  # OQA_Edge Chipping (BS)
    scratch: 190   # OQA_BS-Scratch (Cat Claw)
    stain: 195     # OQA_BS-Stain
    whitedot: 196  # OQA_BS-White Dot

EN Predictor Configs

EN Original Code: [173] AVI_Bevel Defect

en_model:
    # specific model to use, leave empty to use latest model
en_defect_mapping: # correct KLA defect codes for EN defects
    aok: 0         # Unclassified
    chipping: 189  # OQA_Edge Chipping (FS)

FS Predictor Configs

FS Original Code: [056] AVI Def

unimplemented

BE Trainer Configs

Basic Trainer Configs

training_runs: (default=5)
    # no. of models to train
training_subdir: [BACKSIDE / EDGENORMAL]
    # to train either backside or edgenormal models
training_n: (default=300)
    # balanced number of samples per class
training_saving_threshold: [0 - 100] (default=95)
    # min. % test accuracy to clear before the trained model is saved

Advanced Hyperparameter Configs

dense_layers: (default=1)
    # no. of dense layers after the layers of the pretrained model
dense_layer_size: (default=16)
    # size of each dense layer, bigger size results in a bigger .h5 model
dropout: (default=0.2)
    # % of weights to drop randomly to mitigate overfitting
patience: (default=10)
    # no. of epochs to wait before early stopping and take best model

Custom Testing Mode

training_mode: [true / false] (default=true)
    # false if you want to test a specific model
test_model: (default=empty)
    # test this model name if training_mode is false

Abbreviations Guide

  • SSMC: Systems on Silicon Manufacturing Company (TSMC & NXP JV)
  • Defect Classes (the other classes are self-explanatory)
    • aok: ALL-OK, meaning a normal image with no defect (false positive)
  • Domain
    • FS: Frontside
    • BE: Back & Edge (Backside + Edgenormal)
    • BS: Backside
    • EN: Edge Normal
    • ET: Edge Top (ignored)
    • FBE: Frontside-Backside-EdgeNormal
    • AXI: Advanced 3D X-Ray Inspection
    • KLA: File format used by SSMC's infrastructure
  • System
    • CNN: Convolutional Neural Network, the machine learning model used
    • CLI: Command Line Interface
    • GUI: Graphical User Interface
    • df: Dataframe, think of it as Excel but in code
Owner
Tam Zher Min
Penultimate NUS Electrical Engineering Undergraduate
Tam Zher Min
Just a basic Telegram AI chat bot written in Python using Pyrogram.

Nikko ChatBot Just a basic Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher. A bot token. Installation $ https

ʀᴇxɪɴᴀᴢᴏʀ 2 Oct 21, 2022
Jarvis is a simple Chatbot with a GUI capable of chatting and retrieving information and daily news from the internet for it's user.

J.A.R.V.I.S Kindly consider starring this repository if you like the program :-) What/Who is J.A.R.V.I.S? J.A.R.V.I.S is an chatbot written that is bu

Epicalable 50 Dec 31, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest

Rachford-Rice Contest This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest. Can you solve the Rachford-Rice problem for all t

13 Sep 20, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
Stack based programming language that compiles to x86_64 assembly or can alternatively be interpreted in Python

lang lang is a simple stack based programming language written in Python. It can

Christoffer Aakre 1 May 30, 2022
Incorporating KenLM language model with HuggingFace implementation of Wav2Vec2CTC Model using beam search decoding

Wav2Vec2CTC With KenLM Using KenLM ARPA language model with beam search to decode audio files and show the most probable transcription. Assuming you'v

farisalasmary 65 Sep 21, 2022
Fidibo.com comments Sentiment Analyser

Fidibo.com comments Sentiment Analyser Introduction This project first asynchronously grab Fidibo.com books comment data using grabber.py and then sav

Iman Kermani 3 Apr 15, 2022
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022
This repository contains (not all) code from my project on Named Entity Recognition in philosophical text

NERphilosophy 👋 Welcome to the github repository of my BsC thesis. This repository contains (not all) code from my project on Named Entity Recognitio

Ruben 1 Jan 27, 2022
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022
Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁

TGCLOUD 🪁 Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁 Features Easy to Deploy Heroku Supp

Mr.Acid dev 6 Oct 18, 2022
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022