Score-Based Point Cloud Denoising (ICCV'21)

Overview

Score-Based Point Cloud Denoising (ICCV'21)

teaser

[Paper] https://arxiv.org/abs/2107.10981

Installation

Recommended Environment

The code has been tested in the following environment:

Package Version Comment
PyTorch 1.9.0
point_cloud_utils 0.18.0 For evaluation only. It loads meshes to compute point-to-mesh distances.
pytorch3d 0.5.0 For evaluation only. It computes point-to-mesh distances.
pytorch-cluster 1.5.9 We only use fps (farthest point sampling) to merge denoised patches.

Install via Conda (PyTorch 1.9.0 + CUDA 11.1)

conda env create -f env.yml
conda activate score-denoise

Install Manually

conda create --name score-denoise python=3.8
conda activate score-denoise

conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1 -c pytorch -c nvidia

conda install -c conda-forge tqdm scipy scikit-learn pyyaml easydict tensorboard pandas

# point_cloud_utils
conda install -c conda-forge point_cloud_utils==0.18.0

# Pytorch3d
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
conda install -c pytorch3d pytorch3d==0.5.0

# pytorch-scatter
conda install -c pyg pytorch-cluster==1.5.9

Datasets

Download link: https://drive.google.com/drive/folders/1--MvLnP7dsBgBZiu46H0S32Y1eBa_j6P?usp=sharing

Please extract data.zip to data folder.

Denoise

Reproduce Paper Results

# PUNet dataset, 10K Points
python test.py --dataset PUNet --resolution 10000_poisson --noise 0.01 --niters 1
python test.py --dataset PUNet --resolution 10000_poisson --noise 0.02 --niters 1
python test.py --dataset PUNet --resolution 10000_poisson --noise 0.03 --niters 2
# PUNet dataset, 50K Points
python test.py --dataset PUNet --resolution 50000_poisson --noise 0.01 --niters 1
python test.py --dataset PUNet --resolution 50000_poisson --noise 0.02 --niters 1
python test.py --dataset PUNet --resolution 50000_poisson --noise 0.03 --niters 2

Denoise Regular-Size Point Clouds (≤ 50K Points)

python test_single.py --input_xyz <input_xyz_path> --output_xyz <output_xyz_path>

You may also barely run python test_single.py to see a quick example.

Denoise Large Point Clouds (> 50K Points)

python test_large.py --input_xyz <input_xyz_path> --output_xyz <output_xyz_path>

You may also barely run python test_large.py to see a quick example.

Train

python train.py

Please find tunable parameters in the script.

Citation

@InProceedings{Luo_2021_ICCV,
    author    = {Luo, Shitong and Hu, Wei},
    title     = {Score-Based Point Cloud Denoising},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {4583-4592}
}
Owner
Shitong Luo
Undergraduate @ PKU
Shitong Luo
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022
Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

ICTNLP 29 Oct 16, 2022
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
Journalism AI – Quotes extraction for modular journalism

Quote extraction for modular journalism (JournalismAI collab 2021)

Journalism AI collab 2021 207 Dec 25, 2022
Multispeaker & Emotional TTS based on Tacotron 2 and Waveglow

This Repository contains a sample code for Tacotron 2, WaveGlow with multi-speaker, emotion embeddings together with a script for data preprocessing.

Ivan Didur 106 Jan 01, 2023
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022
Write Alphabet, Words and Sentences with your eyes.

The-Next-Gen-AI-Eye-Writer The Eye tracking Technique has become one of the most popular techniques within the human and computer interaction era, thi

Rohan Kasabe 2 Apr 05, 2022
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
Unlimited Call - Text Bombing Tool

FastBomber Unlimited Call - Text Bombing Tool Installation On Termux

Aryan 6 Nov 10, 2022
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 03, 2023
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022