SpikeX - SpaCy Pipes for Knowledge Extraction

Overview

SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Build Status pypi Version Code style: black

What's new in SpikeX 0.5.0

WikiGraph has never been so lightning fast:

  • 🌕 Performance mooning, thanks to the adoption of a sparse adjacency matrix to handle pages graph, instead of using igraph
  • 🚀 Memory optimization, with a consumption cut by ~40% and a compressed size cut by ~20%, introducing new bidirectional dictionaries to manage data
  • 📖 New APIs for a faster and easier usage and interaction
  • 🛠 Overall fixes, for a better graph and a better pages matching

Pipes

  • WikiPageX links Wikipedia pages to chunks in text
  • ClusterX picks noun chunks in a text and clusters them based on a revisiting of the Ball Mapper algorithm, Radial Ball Mapper
  • AbbrX detects abbreviations and acronyms, linking them to their long form. It is based on scispacy's one with improvements
  • LabelX takes labelings of pattern matching expressions and catches them in a text, solving overlappings, abbreviations and acronyms
  • PhraseX creates a Doc's underscore extension based on a custom attribute name and phrase patterns. Examples are NounPhraseX and VerbPhraseX, which extract noun phrases and verb phrases, respectively
  • SentX detects sentences in a text, based on Splitta with refinements

Tools

  • WikiGraph with pages as leaves linked to categories as nodes
  • Matcher that inherits its interface from the spaCy's one, but built using an engine made of RegEx which boosts its performance

Install SpikeX

Some requirements are inherited from spaCy:

  • spaCy version: 2.3+
  • Operating system: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual Studio)
  • Python version: Python 3.6+ (only 64 bit)
  • Package managers: pip

Some dependencies use Cython and it needs to be installed before SpikeX:

pip install cython

Remember that a virtual environment is always recommended, in order to avoid modifying system state.

pip

At this point, installing SpikeX via pip is a one line command:

pip install spikex

Usage

Prerequirements

SpikeX pipes work with spaCy, hence a model its needed to be installed. Follow official instructions here. The brand new spaCy 3.0 is supported!

WikiGraph

A WikiGraph is built starting from some key components of Wikipedia: pages, categories and relations between them.

Auto

Creating a WikiGraph can take time, depending on how large is its Wikipedia dump. For this reason, we provide wikigraphs ready to be used:

Date WikiGraph Lang Size (compressed) Size (memory)
2021-04-01 enwiki_core EN 1.1GB 5.9GB
2021-04-01 simplewiki_core EN 19MB 120MB
2021-04-01 itwiki_core IT 189MB 1.1GB
More coming...

SpikeX provides a command to shortcut downloading and installing a WikiGraph (Linux or macOS, Windows not supported yet):

spikex download-wikigraph simplewiki_core

Manual

A WikiGraph can be created from command line, specifying which Wikipedia dump to take and where to save it:

spikex create-wikigraph \
  <YOUR-OUTPUT-PATH> \
  --wiki <WIKI-NAME, default: en> \
  --version <DUMP-VERSION, default: latest> \
  --dumps-path <DUMPS-BACKUP-PATH> \

Then it needs to be packed and installed:

spikex package-wikigraph \
  <WIKIGRAPH-RAW-PATH> \
  <YOUR-OUTPUT-PATH>

Follow the instructions at the end of the packing process and install the distribution package in your virtual environment. Now your are ready to use your WikiGraph as you wish:

from spikex.wikigraph import load as wg_load

wg = wg_load("enwiki_core")
page = "Natural_language_processing"
categories = wg.get_categories(page, distance=1)
for category in categories:
    print(category)

>>> Category:Speech_recognition
>>> Category:Artificial_intelligence
>>> Category:Natural_language_processing
>>> Category:Computational_linguistics

Matcher

The Matcher is identical to the spaCy's one, but faster when it comes to handle many patterns at once (order of thousands), so follow official usage instructions here.

A trivial example:

from spikex.matcher import Matcher
from spacy import load as spacy_load

nlp = spacy_load("en_core_web_sm")
matcher = Matcher(nlp.vocab)
matcher.add("TEST", [[{"LOWER": "nlp"}]])
doc = nlp("I love NLP")
for _, s, e in matcher(doc):
  print(doc[s: e])

>>> NLP

WikiPageX

The WikiPageX pipe uses a WikiGraph in order to find chunks in a text that match Wikipedia page titles.

from spacy import load as spacy_load
from spikex.wikigraph import load as wg_load
from spikex.pipes import WikiPageX

nlp = spacy_load("en_core_web_sm")
doc = nlp("An apple a day keeps the doctor away")
wg = wg_load("simplewiki_core")
wpx = WikiPageX(wg)
doc = wpx(doc)
for span in doc._.wiki_spans:
  print(span._.wiki_pages)

>>> ['An']
>>> ['Apple', 'Apple_(disambiguation)', 'Apple_(company)', 'Apple_(tree)']
>>> ['A', 'A_(musical_note)', 'A_(New_York_City_Subway_service)', 'A_(disambiguation)', 'A_(Cyrillic)')]
>>> ['Day']
>>> ['The_Doctor', 'The_Doctor_(Doctor_Who)', 'The_Doctor_(Star_Trek)', 'The_Doctor_(disambiguation)']
>>> ['The']
>>> ['Doctor_(Doctor_Who)', 'Doctor_(Star_Trek)', 'Doctor', 'Doctor_(title)', 'Doctor_(disambiguation)']

ClusterX

The ClusterX pipe takes noun chunks in a text and clusters them using a Radial Ball Mapper algorithm.

from spacy import load as spacy_load
from spikex.pipes import ClusterX

nlp = spacy_load("en_core_web_sm")
doc = nlp("Grab this juicy orange and watch a dog chasing a cat.")
clusterx = ClusterX(min_score=0.65)
doc = clusterx(doc)
for cluster in doc._.cluster_chunks:
  print(cluster)

>>> [this juicy orange]
>>> [a cat, a dog]

AbbrX

The AbbrX pipe finds abbreviations and acronyms in the text, linking short and long forms together:

from spacy import load as spacy_load
from spikex.pipes import AbbrX

nlp = spacy_load("en_core_web_sm")
doc = nlp("a little snippet with an abbreviation (abbr)")
abbrx = AbbrX(nlp.vocab)
doc = abbrx(doc)
for abbr in doc._.abbrs:
  print(abbr, "->", abbr._.long_form)

>>> abbr -> abbreviation

LabelX

The LabelX pipe matches and labels patterns in text, solving overlappings, abbreviations and acronyms.

from spacy import load as spacy_load
from spikex.pipes import LabelX

nlp = spacy_load("en_core_web_sm")
doc = nlp("looking for a computer system engineer")
patterns = [
  [{"LOWER": "computer"}, {"LOWER": "system"}],
  [{"LOWER": "system"}, {"LOWER": "engineer"}],
]
labelx = LabelX(nlp.vocab, ("TEST", patterns), validate=True, only_longest=True)
doc = labelx(doc)
for labeling in doc._.labelings:
  print(labeling, f"[{labeling.label_}]")

>>> computer system engineer [TEST]

PhraseX

The PhraseX pipe creates a custom Doc's underscore extension which fulfills with matches from phrase patterns.

from spacy import load as spacy_load
from spikex.pipes import PhraseX

nlp = spacy_load("en_core_web_sm")
doc = nlp("I have Melrose and McIntosh apples, or Williams pears")
patterns = [
  [{"LOWER": "mcintosh"}],
  [{"LOWER": "melrose"}],
]
phrasex = PhraseX(nlp.vocab, "apples", patterns)
doc = phrasex(doc)
for apple in doc._.apples:
  print(apple)

>>> Melrose
>>> McIntosh

SentX

The SentX pipe splits sentences in a text. It modifies tokens' is_sent_start attribute, so it's mandatory to add it before parser pipe in the spaCy pipeline:

from spacy import load as spacy_load
from spikex.pipes import SentX
from spikex.defaults import spacy_version

if spacy_version >= 3:
  from spacy.language import Language

    @Language.factory("sentx")
    def create_sentx(nlp, name):
        return SentX()

nlp = spacy_load("en_core_web_sm")
sentx_pipe = SentX() if spacy_version < 3 else "sentx"
nlp.add_pipe(sentx_pipe, before="parser")
doc = nlp("A little sentence. Followed by another one.")
for sent in doc.sents:
  print(sent)

>>> A little sentence.
>>> Followed by another one.

That's all folks

Feel free to contribute and have fun!

Owner
Erre Quadro Srl
Erre Quadro Srl
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 07, 2023
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
2021海华AI挑战赛·中文阅读理解·技术组·第三名

文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。

21 Dec 26, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker

Multimedia Research 485 Jan 04, 2023
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
Labelling platform for text using distant supervision

With DataQA, you can label unstructured text documents using rule-based distant supervision.

245 Aug 05, 2022
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at

HUSEIN ZOLKEPLI 151 Jan 05, 2023
A simple word search made in python

Word Search Puzzle A simple word search made in python Usage $ python3 main.py -h usage: main.py [-h] [-c] [-f FILE] Generates a word s

Magoninho 16 Mar 10, 2022
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021
leaking paid token generator that was a shit lmao for 100$ haha

Discord-Token-Generator-Leaked leaking paid token generator that was a shit lmao for 100$ he selling it for 100$ wth here the code enjoy don't forget

Keevo 5 Apr 15, 2022
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
Spokestack is a library that allows a user to easily incorporate a voice interface into any Python application with a focus on embedded systems.

Welcome to Spokestack Python! This library is intended for developing voice interfaces in Python. This can include anything from Raspberry Pi applicat

Spokestack 133 Sep 20, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

Alexa 62 Dec 20, 2022