Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Overview

Neural Circuit Policies Enabling Auditable Autonomy

DOI

Online access via SharedIt

Neural Circuit Policies (NCPs) are designed sparse recurrent neural networks based on the LTC neuron and synapse model loosely inspired by the nervous system of the organism C. elegans. This page is a description of the Keras (TensorFlow 2 package) reference implementation of NCPs. For reproducibility materials of the paper see the corresponding subpage.

alt

Installation

Requirements:

  • Python 3.6
  • TensorFlow 2.4
  • (Optional) PyTorch 1.7
pip install keras-ncp

Update January 2021: Experimental PyTorch support added

With keras-ncp version 2.0 experimental PyTorch support is added. There is an example on how to use the PyTorch binding in the examples folder and a Colab notebook linked below. Note that the support is currently experimental, which means that it currently misses some functionality (e.g., no plotting, no irregularly sampled time-series,etc. ) and might be subject to breaking API changes in future updates.

Breaking API changes between 1.x and 2.x

The TensorFlow bindings have been moved to the tf submodule. Thus the only breaking change regarding the TensorFlow/Keras bindings concern the import

# Import shared modules for wirings, datasets,...
import kerasncp as kncp
# Import framework-specific binding
from kerasncp.tf import LTCCell      # Use TensorFlow binding
(from kerasncp.torch import LTCCell  # Use PyTorch binding)

Colab notebooks

We have created a few Google Colab notebooks for an interactive introduction to the package

Usage: the basics

The package is composed of two main parts:

  • The LTC model as a tf.keras.layers.Layer or torch.nn.Module RNN cell
  • An wiring architecture for the LTC cell above

The wiring could be fully-connected (all-to-all) or sparsely designed using the NCP principles introduced in the paper. As the LTC model is expressed in the form of a system of ordinary differential equations in time, any instance of it is inherently a recurrent neural network (RNN).

Let's create a LTC network consisting of 8 fully-connected neurons that receive a time-series of 2 input features as input. Moreover, we define that 1 of the 8 neurons acts as the output (=motor neuron):

from tensorflow import keras
import kerasncp as kncp
from kerasncp.tf import LTCCell

wiring = kncp.wirings.FullyConnected(8, 1)  # 8 units, 1 motor neuron
ltc_cell = LTCCell(wiring) # Create LTC model

model = keras.Sequential(
    [
        keras.layers.InputLayer(input_shape=(None, 2)), # 2 input features
        keras.layers.RNN(ltc_cell, return_sequences=True),
    ]
)
model.compile(
    optimizer=keras.optimizers.Adam(0.01), loss='mean_squared_error'
)

We can then fit this model to a generated sine wave, as outlined in the tutorials (open in Google Colab).

alt

More complex architectures

We can also create some more complex NCP wiring architecture. Simply put, an NCP is a 4-layer design vaguely inspired by the wiring of the C. elegans worm. The four layers are sensory, inter, command, and motor layer, which are sparsely connected in a feed-forward fashion. On top of that, the command layer realizes some recurrent connections. As their names already indicate, the sensory represents the input and the motor layer the output of the network.

We can also customize some of the parameter initialization ranges, although the default values should work fine for most cases.

ncp_wiring = kncp.wirings.NCP(
    inter_neurons=20,  # Number of inter neurons
    command_neurons=10,  # Number of command neurons
    motor_neurons=5,  # Number of motor neurons
    sensory_fanout=4,  # How many outgoing synapses has each sensory neuron
    inter_fanout=5,  # How many outgoing synapses has each inter neuron
    recurrent_command_synapses=6,  # Now many recurrent synapses are in the
    # command neuron layer
    motor_fanin=4,  # How many incoming synapses has each motor neuron
)
ncp_cell = LTCCell(
    ncp_wiring,
    initialization_ranges={
        # Overwrite some of the initialization ranges
        "w": (0.2, 2.0),
    },
)

We can then combine the NCP cell with arbitrary keras.layers, for instance to build a powerful image sequence classifier:

height, width, channels = (78, 200, 3)

model = keras.models.Sequential(
    [
        keras.layers.InputLayer(input_shape=(None, height, width, channels)),
        keras.layers.TimeDistributed(
            keras.layers.Conv2D(32, (5, 5), activation="relu")
        ),
        keras.layers.TimeDistributed(keras.layers.MaxPool2D()),
        keras.layers.TimeDistributed(
            keras.layers.Conv2D(64, (5, 5), activation="relu")
        ),
        keras.layers.TimeDistributed(keras.layers.MaxPool2D()),
        keras.layers.TimeDistributed(keras.layers.Flatten()),
        keras.layers.TimeDistributed(keras.layers.Dense(32, activation="relu")),
        keras.layers.RNN(ncp_cell, return_sequences=True),
        keras.layers.TimeDistributed(keras.layers.Activation("softmax")),
    ]
)
model.compile(
    optimizer=keras.optimizers.Adam(0.01),
    loss='sparse_categorical_crossentropy',
)
@article{lechner2020neural,
  title={Neural circuit policies enabling auditable autonomy},
  author={Lechner, Mathias and Hasani, Ramin and Amini, Alexander and Henzinger, Thomas A and Rus, Daniela and Grosu, Radu},
  journal={Nature Machine Intelligence},
  volume={2},
  number={10},
  pages={642--652},
  year={2020},
  publisher={Nature Publishing Group}
}
You might also like...
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

Code for our paper
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Open Source Neural Machine Translation in PyTorch
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sockeye This package contains the Sockeye project, an open-source sequence-to-sequence framework for Neural Machine Translation based on Apache MXNet

Releases(v2.0.0)
Owner
PhD candidate at IST Austria. Working on Machine Learning, Robotics, and Verification
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning

SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning We propose a SASE mode

Tower 1 Nov 20, 2021
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
RecipeReduce: Simplified Recipe Processing for Lazy Programmers

RecipeReduce This repo will help you figure out the amount of ingredients to buy for a certain number of meals with selected recipes. RecipeReduce Get

Qibin Chen 9 Apr 22, 2022
The aim of this task is to predict someone's English proficiency based on a text input.

English_proficiency_prediction_NLP The aim of this task is to predict someone's English proficiency based on a text input. Using the The NICT JLE Corp

1 Dec 13, 2021
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Sergio Burdisso 285 Jan 02, 2023
A Streamlit web app that generates Rick and Morty stories using GPT2.

Rick and Morty Story Generator This project uses a pre-trained GPT2 model, which was fine-tuned on Rick and Morty transcripts, to generate new stories

₸ornike 33 Oct 13, 2022
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.

A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to ach

Keon Lee 237 Jan 02, 2023
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
📝An easy-to-use package to restore punctuation of the text.

✏️ rpunct - Restore Punctuation This repo contains code for Punctuation restoration. This package is intended for direct use as a punctuation restorat

Daulet Nurmanbetov 72 Dec 30, 2022
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

Michael Petrochuk 2.1k Jan 01, 2023
Code associated with the Don't Stop Pretraining ACL 2020 paper

dont-stop-pretraining Code associated with the Don't Stop Pretraining ACL 2020 paper Citation @inproceedings{dontstoppretraining2020, author = {Suchi

AI2 449 Jan 04, 2023
🐍💯pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti

Nipun Sadvilkar 549 Jan 06, 2023
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022