This repository contains the official release of the model "BanglaBERT" and associated downstream finetuning code and datasets introduced in the paper titled "BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding".

Overview

BanglaBERT

This repository contains the official release of the model "BanglaBERT" and associated downstream finetuning code and datasets introduced in the paper titled "BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding".

Table of Contents

Models

We are releasing a slightly better checkpoint than the one reported in the paper, pretrained with 27.5 GB data, more code switched and code mixed texts, and pretrained further for 2.5M steps. The pretrained model checkpoint is available here. To use this model for the supported downstream tasks in this repository see Training & Evaluation.

Note: This model was pretrained using a specific normalization pipeline available here. All finetuning scripts in this repository uses this normalization by default. If you need to adapt the pretrained model for a different task make sure the text units are normalized using this pipeline before tokenizing to get best results. A basic example is available at the model page.

Datasets

We are also releasing the Bangla Natural Language Inference (NLI) dataset introduced in the paper. The dataset can be found here.

Setup

For installing the necessary requirements, use the following snippet

$ git clone https://https://github.com/csebuetnlp/banglabert
$ cd banglabert/
$ conda create python==3.7.9 pytorch==1.8.1 torchvision==0.9.1 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch -p ./env
$ conda activate ./env # or source activate ./env (for older versions of anaconda)
$ bash setup.sh 
  • Use the newly created environment for running the scripts in this repository.

Training & Evaluation

To use the pretrained model for finetuning / inference on different downstream tasks see the following section:

  • Sequence Classification.
    • For single sequence classification such as
      • Document classification
      • Sentiment classification
      • Emotion classification etc.
    • For double sequence classification such as
      • Natural Language Inference (NLI)
      • Paraphrase detection etc.
  • Token Classification.
    • For token tagging / classification tasks such as
      • Named Entity Recognition (NER)
      • Parts of Speech Tagging (PoS) etc.

Benchmarks

SC EC DC NER NLI
Metrics Accuracy F1* Accuracy F1 (Entity)* Accuracy
mBERT 83.39 56.02 98.64 67.40 75.40
XLM-R 89.49 66.70 98.71 70.63 76.87
sagorsarker/bangla-bert-base 87.30 61.51 98.79 70.97 70.48
monsoon-nlp/bangla-electra 73.54 34.55 97.64 52.57 63.48
BanglaBERT 92.18 74.27 99.07 72.18 82.94

* - Weighted Average

The benchmarking datasets are as follows:

Acknowledgements

We would like to thank Intelligent Machines and Google TFRC Program for providing cloud support for pretraining the models.

License

Contents of this repository are restricted to non-commercial research purposes only under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).

Creative Commons License

Citation

If you use any of the datasets, models or code modules, please cite the following paper:

@article{bhattacharjee2021banglabert,
  author    = {Abhik Bhattacharjee and Tahmid Hasan and Kazi Samin and Md Saiful Islam and M. Sohel Rahman and Anindya Iqbal and Rifat Shahriyar},
  title     = {BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding},
  journal   = {CoRR},
  volume    = {abs/2101.00204},
  year      = {2021},
  url       = {https://arxiv.org/abs/2101.00204},
  eprinttype = {arXiv},
  eprint    = {2101.00204}
}
vits chinese, tts chinese, tts mandarin

vits chinese, tts chinese, tts mandarin 史上训练最简单,音质最好的语音合成系统

AmorTX 12 Dec 14, 2022
It analyze the sentiment of the user, whether it is postive or negative.

Sentiment-Analyzer-Tool It analyze the sentiment of the user, whether it is postive or negative. It uses streamlit library for creating this sentiment

Paras Patidar 18 Dec 17, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021
Named Entity Recognition API used by TEI Publisher

TEI Publisher Named Entity Recognition API This repository contains the API used by TEI Publisher's web-annotation editor to detect entities in the in

e-editiones.org 14 Nov 15, 2022
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022
Text editor on python to convert english text to malayalam(Romanization/Transiteration).

Manglish Text Editor This is a simple transiteration (romanization ) program which is used to convert manglish to malayalam (converts njaan to ഞാൻ ).

Merin Rose Tom 1 May 11, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022
天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

zxx飞翔的鱼 751 Dec 30, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
Tools, wrappers, etc... for data science with a concentration on text processing

Rosetta Tools for data science with a focus on text processing. Focuses on "medium data", i.e. data too big to fit into memory but too small to necess

207 Nov 22, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Megagon Labs 160 Dec 23, 2022
Code for using and evaluating SpanBERT.

SpanBERT This repository contains code and models for the paper: SpanBERT: Improving Pre-training by Representing and Predicting Spans. If you prefer

Meta Research 798 Dec 30, 2022
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima

Brycen Westgarth 110 Jan 07, 2023
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS) Yoonhyung Lee, Joongbo Shin, Kyomin Jung Abstract: Although early

LEE YOON HYUNG 147 Dec 05, 2022
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023