Generate text line images for training deep learning OCR model (e.g. CRNN)

Overview

Text Renderer

Generate text line images for training deep learning OCR model (e.g. CRNN). example

  • Modular design. You can easily add different components: Corpus, Effect, Layout.
  • Integrate with imgaug, see imgaug_example for usage.
  • Support render multi corpus on image with different effects. Layout is responsible for the layout between multiple corpora
  • Support apply effects on different stages of rendering process corpus_effects, layout_effects, render_effects.
  • Generate vertical text.
  • Support generate lmdb dataset which compatible with PaddleOCR, see Dataset
  • A web font viewer.
  • Corpus sampler: helpful to perform character balance

Documentation

Run Example

Run following command to generate images using example data:

git clone https://github.com/oh-my-ocr/text_renderer
cd text_renderer
python3 setup.py develop
pip3 install -r docker/requirements.txt
python3 main.py \
    --config example_data/example.py \
    --dataset img \
    --num_processes 2 \
    --log_period 10

The data is generated in the example_data/output directory. A labels.json file contains all annotations in follow format:

{
  "labels": {
    "000000000": "test",
    "000000001": "text2"
  },
  "sizes": {
    "000000000": [
      120,
      32 
    ],
    "000000001": [
      128,
      32 
    ]
  },
  "num-samples": 2
}

You can also use --dataset lmdb to store image in lmdb file, lmdb file contains follow keys:

  • num-samples
  • image-000000000
  • label-000000000
  • size-000000000

You can check config file example_data/example.py to learn how to use text_renderer, or follow the Quick Start to learn how to setup configuration

Quick Start

Prepare file resources

  • Font files: .ttf.otf.ttc
  • Background images of any size, either from your business scenario or from publicly available datasets (COCO, VOC)
  • Corpus: text_renderer offers a wide variety of text sampling methods, to use these methods, you need to consider the preparation of the corpus from two perspectives:
  1. The corpus must be in the target language for which you want to perform OCR recognition
  2. The corpus should meets your actual business needs, such as education field, medical field, etc.
  • Charset file [Optional but recommend]: OCR models in real-world scenarios (e.g. CRNN) usually support only a limited character set, so it's better to filter out characters outside the character set during data generation. You can do this by setting the chars_file parameter

You can download pre-prepared file resources for this Quick Start from here:

Save these resource files in the same directory:

workspace
├── bg
│ └── background.png
├── corpus
│ └── eng_text.txt
└── font
    └── simsun.ttf

Create config file

Create a config.py file in workspace directory. One configuration file must have a configs variable, it's a list of GeneratorCfg.

The complete configuration file is as follows:

import os
from pathlib import Path

from text_renderer.effect import *
from text_renderer.corpus import *
from text_renderer.config import (
    RenderCfg,
    NormPerspectiveTransformCfg,
    GeneratorCfg,
    SimpleTextColorCfg,
)

CURRENT_DIR = Path(os.path.abspath(os.path.dirname(__file__)))


def story_data():
    return GeneratorCfg(
        num_image=10,
        save_dir=CURRENT_DIR / "output",
        render_cfg=RenderCfg(
            bg_dir=CURRENT_DIR / "bg",
            height=32,
            perspective_transform=NormPerspectiveTransformCfg(20, 20, 1.5),
            corpus=WordCorpus(
                WordCorpusCfg(
                    text_paths=[CURRENT_DIR / "corpus" / "eng_text.txt"],
                    font_dir=CURRENT_DIR / "font",
                    font_size=(20, 30),
                    num_word=(2, 3),
                ),
            ),
            corpus_effects=Effects(Line(0.9, thickness=(2, 5))),
            gray=False,
            text_color_cfg=SimpleTextColorCfg(),
        ),
    )


configs = [story_data()]

In the above configuration we have done the following things:

  1. Specify the location of the resource file
  2. Specified text sampling method: 2 or 3 words are randomly selected from the corpus
  3. Configured some effects for generation
  4. Specifies font-related parameters: font_size, font_dir

Run

Run main.py, it only has 4 arguments:

  • config:Python config file path
  • dataset: Dataset format img or lmdb
  • num_processes: Number of processes used
  • log_period: Period of log printing. (0, 100)

All Effect/Layout Examples

Find all effect/layout config example at link

  • bg_and_text_mask: Three images of the same width are merged together horizontally, it can be used to train GAN model like EraseNet
Name Example
0 bg_and_text_mask bg_and_text_mask.jpg
1 char_spacing_compact char_spacing_compact.jpg
2 char_spacing_large char_spacing_large.jpg
3 color_image color_image.jpg
4 curve curve.jpg
5 dropout_horizontal dropout_horizontal.jpg
6 dropout_rand dropout_rand.jpg
7 dropout_vertical dropout_vertical.jpg
8 emboss emboss.jpg
9 extra_text_line_layout extra_text_line_layout.jpg
10 line_bottom line_bottom.jpg
11 line_bottom_left line_bottom_left.jpg
12 line_bottom_right line_bottom_right.jpg
13 line_horizontal_middle line_horizontal_middle.jpg
14 line_left line_left.jpg
15 line_right line_right.jpg
16 line_top line_top.jpg
17 line_top_left line_top_left.jpg
18 line_top_right line_top_right.jpg
19 line_vertical_middle line_vertical_middle.jpg
20 padding padding.jpg
21 perspective_transform perspective_transform.jpg
22 same_line_layout_different_font_size same_line_layout_different_font_size.jpg
23 vertical_text vertical_text.jpg

Contribution

  • Corpus: Feel free to contribute more corpus generators to the project, It does not necessarily need to be a generic corpus generator, but can also be a business-specific generator, such as generating ID numbers

Run in Docker

Build image

docker build -f docker/Dockerfile -t text_renderer .

Config file is provided by CONFIG environment. In example.py file, data is generated in example_data/output directory, so we map this directory to the host.

docker run --rm \
-v `pwd`/example_data/docker_output/:/app/example_data/output \
--env CONFIG=/app/example_data/example.py \
--env DATASET=img \
--env NUM_PROCESSES=2 \
--env LOG_PERIOD=10 \
text_renderer

Font Viewer

Start font viewer

streamlit run tools/font_viewer.py -- web /path/to/fonts_dir

image

Build docs

cd docs
make html
open _build/html/index.html

Citing text_renderer

If you use text_renderer in your research, please consider use the following BibTeX entry.

@misc{text_renderer,
  author =       {oh-my-ocr},
  title =        {text_renderer},
  howpublished = {\url{https://github.com/oh-my-ocr/text_renderer}},
  year =         {2021}
}
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
Download videos from YouTube/Twitch/Twitter right in the Windows Explorer, without installing any shady shareware apps

youtube-dl and ffmpeg Windows Explorer Integration Download videos from YouTube/Twitch/Twitter and more (any platform that is supported by youtube-dl)

Wolfgang 226 Dec 30, 2022
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
Example code for "Real-World Natural Language Processing"

Real-World Natural Language Processing This repository contains example code for the book "Real-World Natural Language Processing." AllenNLP (2.5.0 or

Masato Hagiwara 303 Dec 17, 2022
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Meta Research 711 Jan 08, 2023
端到端的长本文摘要模型(法研杯2020司法摘要赛道)

端到端的长文本摘要模型(法研杯2020司法摘要赛道)

苏剑林(Jianlin Su) 334 Jan 08, 2023
A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code or write code yourself

Scriptfab - What is it? A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code

DevNugget 3 Jul 28, 2021
Train BPE with fastBPE, and load to Huggingface Tokenizer.

BPEer Train BPE with fastBPE, and load to Huggingface Tokenizer. Description The BPETrainer of Huggingface consumes a lot of memory when I am training

Lizhuo 1 Dec 23, 2021
Chinese version of GPT2 training code, using BERT tokenizer.

GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository

Zeyao Du 5.6k Jan 04, 2023
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
Code of paper: A Recurrent Vision-and-Language BERT for Navigation

Recurrent VLN-BERT Code of the Recurrent-VLN-BERT paper: A Recurrent Vision-and-Language BERT for Navigation Yicong Hong, Qi Wu, Yuankai Qi, Cristian

YicongHong 109 Dec 21, 2022
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretra

Mozilla 6.5k Jan 08, 2023
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
Journalism AI – Quotes extraction for modular journalism

Quote extraction for modular journalism (JournalismAI collab 2021)

Journalism AI collab 2021 207 Dec 25, 2022