Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Overview

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

This is the official repository for the EMNLP 2021 long paper Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration. We provide code for training and evaluating Phrase-BERT in addition to the datasets used in the paper.

Update: the model is also available now on Huggingface thanks to the help from whaleloops and nreimers!

Setup

This repository depends on sentence-BERT version 0.3.3, which you can install from the source using:

>>> git clone https://github.com/UKPLab/sentence-transformers.git --branch v0.3.3
>>> cd sentence-transformers/
>>> pip install -e .

Also you can install sentence-BERT with pip:

>>> pip install sentence-transformers==0.3.3

Quick Start

The following example shows how to use a trained Phrase-BERT model to embed phrases into dense vectors.

First download and unzip our model.

>>> cd 
   
    
>>> wget https://storage.googleapis.com/phrase-bert/phrase-bert/phrase-bert-model.zip
>>> unzip phrase-bert-model.zip -d phrase-bert-model/
>>> rm phrase-bert-model.zip

   

Then load the Phrase-BERT model through the sentence-BERT interface:

from sentence_transformers import SentenceTransformer
model_path = '
   
    '
model = SentenceTransformer(model_path)

   

You can compute phrase embeddings using Phrase-BERT as follows:

phrase_list = [ 'play an active role', 'participate actively', 'active lifestyle']
phrase_embs = model.encode( phrase_list )
[p1, p2, p3] = phrase_embs

As in sentence-BERT, the default output is a list of numpy arrays:

for phrase, embedding in zip(phrase_list, phrase_embs):
    print("Phrase:", phrase)
    print("Embedding:", embedding)
    print("")

An example of computing the dot product of phrase embeddings:

import numpy as np
print(f'The dot product between phrase 1 and 2 is: {np.dot(p1, p2)}')
print(f'The dot product between phrase 1 and 3 is: {np.dot(p1, p3)}')
print(f'The dot product between phrase 2 and 3 is: {np.dot(p2, p3)}')

An example of computing cosine similarity of phrase embeddings:

import torch 
from torch import nn
cos_sim = nn.CosineSimilarity(dim=0)
print(f'The cosine similarity between phrase 1 and 2 is: {cos_sim( torch.tensor(p1), torch.tensor(p2))}')
print(f'The cosine similarity between phrase 1 and 3 is: {cos_sim( torch.tensor(p1), torch.tensor(p3))}')
print(f'The cosine similarity between phrase 2 and 3 is: {cos_sim( torch.tensor(p2), torch.tensor(p3))}')

The output should look like:

The dot product between phrase 1 and 2 is: 218.43600463867188
The dot product between phrase 1 and 3 is: 165.48483276367188
The dot product between phrase 2 and 3 is: 160.51708984375
The cosine similarity between phrase 1 and 2 is: 0.8142536282539368
The cosine similarity between phrase 1 and 3 is: 0.6130303144454956
The cosine similarity between phrase 2 and 3 is: 0.584893524646759

Evaluation

Given the lack of a unified phrase embedding evaluation benchmark, we collect the following five phrase semantics evaluation tasks, which are described further in our paper:

Change config/model_path.py with the model path according to your directories and

  • For evaluation on Turney, run python eval_turney.py

  • For evaluation on BiRD, run python eval_bird.py

  • for evaluation on PPDB / PPDB-filtered / PAWS-short, run eval_ppdb_paws.py with:

    nohup python  -u eval_ppdb_paws.py \
        --full_run_mode \
        --task 
         
           \
        --data_dir 
          
            \
        --result_dir 
           
             \
        >./output.txt 2>&1 &
    
           
          
         

Train your own Phrase-BERT

If you would like to go beyond using the pre-trained Phrase-BERT model, you may train your own Phrase-BERT using data from the domain you are interested in. Please refer to phrase-bert/phrase_bert_finetune.py

The datasets we used to fine-tune Phrase-BERT are here: training data csv file and validation data csv file.

To re-produce the trained Phrase-BERT, please run:

export INPUT_DATA_PATH=
   
    
export TRAIN_DATA_FILE=
    
     
export VALID_DATA_FILE=
     
      
export INPUT_MODEL_PATH=bert-base-nli-stsb-mean-tokens 
export OUTPUT_MODEL_PATH=
      
       


python -u phrase_bert_finetune.py \
    --input_data_path $INPUT_DATA_PATH \
    --train_data_file $TRAIN_DATA_FILE \
    --valid_data_file $VALID_DATA_FILE \
    --input_model_path $INPUT_MODEL_PATH \
    --output_model_path $OUTPUT_MODEL_PATH

      
     
    
   

Citation:

Please cite us if you find this useful:

@inproceedings{phrasebertwang2021,
    author={Shufan Wang and Laure Thompson and Mohit Iyyer},
    Booktitle = {Empirical Methods in Natural Language Processing},
    Year = "2021",
    Title={Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration}
}
Simplified diarization pipeline using some pretrained models - audio file to diarized segments in a few lines of code

simple_diarizer Simplified diarization pipeline using some pretrained models. Made to be a simple as possible to go from an input audio file to diariz

Chau 65 Dec 30, 2022
Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

snoop2head 14 Nov 15, 2022
뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

뉴스 도메인 질의응답 시스템 본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로

TaegyeongEo 4 Jul 08, 2022
This is a simple item2vec implementation using gensim for recbole

recbole-item2vec-model This is a simple item2vec implementation using gensim for recbole( https://recbole.io ) Usage When you want to run experiment f

Yusuke Fukasawa 2 Oct 06, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks

wav2vec_finetune Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks Initial test: gender recognition on this dat

8 Aug 11, 2022
A website which allows you to play with the GPT-2 transformer

transformers A website which allows you to play with the GPT-2 model Built with ❤️ by raphtlw Table of contents Model Setup About Contributors Model T

raphtlw 2 Jan 27, 2022
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
Espresso: A Fast End-to-End Neural Speech Recognition Toolkit

Espresso Espresso is an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning libra

Yiming Wang 919 Jan 03, 2023
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
🐍💯pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti

Nipun Sadvilkar 549 Jan 06, 2023
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 27, 2022
NLP tool to extract emotional phrase from tweets 🤩

Emotional phrase extractor Extract phrase in the given text that is used to express the sentiment. Capturing sentiment in language is important in the

Shahul ES 38 Oct 17, 2022
Big Bird: Transformers for Longer Sequences

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the c

Google Research 457 Dec 23, 2022
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl

VUMBLEB 69 Nov 04, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
Python library for Serbian Natural language processing (NLP)

SrbAI - Python biblioteka za procesiranje srpskog jezika SrbAI je projekat prikupljanja algoritama i modela za procesiranje srpskog jezika u jedinstve

Serbian AI Society 3 Nov 22, 2022
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022