Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Overview

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

This is the official repository for the EMNLP 2021 long paper Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration. We provide code for training and evaluating Phrase-BERT in addition to the datasets used in the paper.

Update: the model is also available now on Huggingface thanks to the help from whaleloops and nreimers!

Setup

This repository depends on sentence-BERT version 0.3.3, which you can install from the source using:

>>> git clone https://github.com/UKPLab/sentence-transformers.git --branch v0.3.3
>>> cd sentence-transformers/
>>> pip install -e .

Also you can install sentence-BERT with pip:

>>> pip install sentence-transformers==0.3.3

Quick Start

The following example shows how to use a trained Phrase-BERT model to embed phrases into dense vectors.

First download and unzip our model.

>>> cd 
   
    
>>> wget https://storage.googleapis.com/phrase-bert/phrase-bert/phrase-bert-model.zip
>>> unzip phrase-bert-model.zip -d phrase-bert-model/
>>> rm phrase-bert-model.zip

   

Then load the Phrase-BERT model through the sentence-BERT interface:

from sentence_transformers import SentenceTransformer
model_path = '
   
    '
model = SentenceTransformer(model_path)

   

You can compute phrase embeddings using Phrase-BERT as follows:

phrase_list = [ 'play an active role', 'participate actively', 'active lifestyle']
phrase_embs = model.encode( phrase_list )
[p1, p2, p3] = phrase_embs

As in sentence-BERT, the default output is a list of numpy arrays:

for phrase, embedding in zip(phrase_list, phrase_embs):
    print("Phrase:", phrase)
    print("Embedding:", embedding)
    print("")

An example of computing the dot product of phrase embeddings:

import numpy as np
print(f'The dot product between phrase 1 and 2 is: {np.dot(p1, p2)}')
print(f'The dot product between phrase 1 and 3 is: {np.dot(p1, p3)}')
print(f'The dot product between phrase 2 and 3 is: {np.dot(p2, p3)}')

An example of computing cosine similarity of phrase embeddings:

import torch 
from torch import nn
cos_sim = nn.CosineSimilarity(dim=0)
print(f'The cosine similarity between phrase 1 and 2 is: {cos_sim( torch.tensor(p1), torch.tensor(p2))}')
print(f'The cosine similarity between phrase 1 and 3 is: {cos_sim( torch.tensor(p1), torch.tensor(p3))}')
print(f'The cosine similarity between phrase 2 and 3 is: {cos_sim( torch.tensor(p2), torch.tensor(p3))}')

The output should look like:

The dot product between phrase 1 and 2 is: 218.43600463867188
The dot product between phrase 1 and 3 is: 165.48483276367188
The dot product between phrase 2 and 3 is: 160.51708984375
The cosine similarity between phrase 1 and 2 is: 0.8142536282539368
The cosine similarity between phrase 1 and 3 is: 0.6130303144454956
The cosine similarity between phrase 2 and 3 is: 0.584893524646759

Evaluation

Given the lack of a unified phrase embedding evaluation benchmark, we collect the following five phrase semantics evaluation tasks, which are described further in our paper:

Change config/model_path.py with the model path according to your directories and

  • For evaluation on Turney, run python eval_turney.py

  • For evaluation on BiRD, run python eval_bird.py

  • for evaluation on PPDB / PPDB-filtered / PAWS-short, run eval_ppdb_paws.py with:

    nohup python  -u eval_ppdb_paws.py \
        --full_run_mode \
        --task 
         
           \
        --data_dir 
          
            \
        --result_dir 
           
             \
        >./output.txt 2>&1 &
    
           
          
         

Train your own Phrase-BERT

If you would like to go beyond using the pre-trained Phrase-BERT model, you may train your own Phrase-BERT using data from the domain you are interested in. Please refer to phrase-bert/phrase_bert_finetune.py

The datasets we used to fine-tune Phrase-BERT are here: training data csv file and validation data csv file.

To re-produce the trained Phrase-BERT, please run:

export INPUT_DATA_PATH=
   
    
export TRAIN_DATA_FILE=
    
     
export VALID_DATA_FILE=
     
      
export INPUT_MODEL_PATH=bert-base-nli-stsb-mean-tokens 
export OUTPUT_MODEL_PATH=
      
       


python -u phrase_bert_finetune.py \
    --input_data_path $INPUT_DATA_PATH \
    --train_data_file $TRAIN_DATA_FILE \
    --valid_data_file $VALID_DATA_FILE \
    --input_model_path $INPUT_MODEL_PATH \
    --output_model_path $OUTPUT_MODEL_PATH

      
     
    
   

Citation:

Please cite us if you find this useful:

@inproceedings{phrasebertwang2021,
    author={Shufan Wang and Laure Thompson and Mohit Iyyer},
    Booktitle = {Empirical Methods in Natural Language Processing},
    Year = "2021",
    Title={Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration}
}
Library for Russian imprecise rhymes generation

TOM RHYMER Library for Russian imprecise rhymes generation. Quick Start Generate rhymes by any given rhyme scheme (aabb, abab, aaccbb, etc ...): from

Alexey Karnachev 6 Oct 18, 2022
Code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

This repository contains the code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

Chenhe Dong 28 Nov 10, 2022
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour

edesz 1 Jan 03, 2022
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect.

117 Jan 07, 2023
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
VMD Audio/Text control with natural language

This repository is a proof of principle for performing Molecular Dynamics analysis, in this case with the program VMD, via natural language commands.

Andrew White 13 Jun 09, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Code examples for my Write Better Python Code series on YouTube.

Write Better Python Code This repository contains the code examples used in my Write Better Python Code series published on YouTube: https:/

858 Dec 29, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
Sentello is python script that simulates the anti-evasion and anti-analysis techniques used by malware.

sentello Sentello is a python script that simulates the anti-evasion and anti-analysis techniques used by malware. For techniques that are difficult t

Malwation 62 Oct 02, 2022
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
Code for using and evaluating SpanBERT.

SpanBERT This repository contains code and models for the paper: SpanBERT: Improving Pre-training by Representing and Predicting Spans. If you prefer

Meta Research 798 Dec 30, 2022