Simple and efficient RevNet-Library with DeepSpeed support

Related tags

Text Data & NLPrevlib
Overview

RevLib

Simple and efficient RevNet-Library with DeepSpeed support

Features

  • Half the constant memory usage and faster than RevNet libraries
  • Less memory than gradient checkpointing (1 * output_size instead of n_layers * output_size)
  • Same speed as activation checkpointing
  • Extensible
  • Trivial code (<100 Lines)

Getting started

Installation

python3 -m pip install revlib

Examples

iRevNet

iRevNet is not only partially reversible but instead a fully-invertible model. The source code looks complex at first glance. It also doesn't use the memory savings it could utilize, as RevNet requires custom AutoGrad functions that are hard to maintain. An iRevNet can be implemented like this using revlib:

import torch
from torch import nn
import revlib

channels = 64
channel_multiplier = 4
depth = 3
classes = 1000


# Create a basic function that's reversibly executed multiple times. (Like f() in ResNet)
def conv(in_channels, out_channels):
    return nn.Conv2d(in_channels, out_channels, (3, 3), padding=1)


def block_conv(in_channels, out_channels):
    return nn.Sequential(conv(in_channels, out_channels),
                         nn.Dropout(0.2),
                         nn.BatchNorm2d(out_channels),
                         nn.ReLU())


def block():
    return nn.Sequential(block_conv(channels, channels * channel_multiplier),
                         block_conv(channels * channel_multiplier, channels),
                         nn.Conv2d(channels, channels, (3, 3), padding=1))


# Create a reversible model. f() is invoked depth-times with different weights.
rev_model = revlib.ReversibleSequential(*[block() for _ in range(depth)])

# Wrap reversible model with non-reversible layers
model = nn.Sequential(conv(3, 2*channels), rev_model, conv(2 * channels, classes))

# Use it like you would a regular PyTorch model
inp = torch.randn((1, 3, 224, 224))
out = model(inp)
out.mean().backward()
assert out.size() == (1, 1000, 224, 224)

MomentumNet

MomentumNet is another recent paper that made significant advancements in the area of memory-efficient networks. They propose to use a momentum stream instead of a second model output as illustrated below: MomentumNetIllustration. Implementing that with revlib requires you to write a custom coupling operation (functional analogue to MemCNN) that merges input and output streams.

import torch
from torch import nn
import revlib

channels = 64
depth = 16
momentum_ema_beta = 0.99


# Compute y2 from x2 and f(x1) by merging x2 and f(x1) in the forward pass.
def momentum_coupling_forward(other_stream: torch.Tensor, fn_out: torch.Tensor) -> torch.Tensor:
    return other_stream * momentum_ema_beta + fn_out * (1 - momentum_ema_beta)


# Calculate x2 from y2 and f(x1) by manually computing the inverse of momentum_coupling_forward.
def momentum_coupling_inverse(output: torch.Tensor, fn_out: torch.Tensor) -> torch.Tensor:
    return (output - fn_out * (1 - momentum_ema_beta)) / momentum_ema_beta


# Pass in coupling functions which will be used instead of x2 + f(x1) and y2 - f(x1)
rev_model = revlib.ReversibleSequential(*[layer for _ in range(depth)
                                          for layer in [nn.Conv2d(channels, channels, (3, 3), padding=1),
                                                        nn.Identity()]],
                                        coupling_forward=[momentum_coupling_forward, revlib.additive_coupling_forward],
                                        coupling_inverse=[momentum_coupling_inverse, revlib.additive_coupling_inverse])

inp = torch.randn((16, channels * 2, 224, 224))
out = rev_model(inp)
assert out.size() == (16, channels * 2, 224, 224)

Reformer

Reformer uses RevNet with chunking and LSH-attention to efficiently train a transformer. Using revlib, standard implementations, such as lucidrains' Reformer, can be improved upon to use less memory. Below we're still using the basic building blocks from lucidrains' code to have a comparable model.

import torch
from torch import nn
from reformer_pytorch.reformer_pytorch import LSHSelfAttention, Chunk, FeedForward, AbsolutePositionalEmbedding
import revlib


class Reformer(torch.nn.Module):
    def __init__(self, sequence_length: int, features: int, depth: int, heads: int, bucket_size: int = 64,
                 lsh_hash_count: int = 8, ff_chunks: int = 16, input_classes: int = 256, output_classes: int = 256):
        super(Reformer, self).__init__()
        self.token_embd = nn.Embedding(input_classes, features * 2)
        self.pos_embd = AbsolutePositionalEmbedding(features * 2, sequence_length)

        self.core = revlib.ReversibleSequential(*[nn.Sequential(nn.LayerNorm(features), layer) for _ in range(depth)
                                                 for layer in
                                                 [LSHSelfAttention(features, heads, bucket_size, lsh_hash_count),
                                                  Chunk(ff_chunks, FeedForward(features, activation=nn.GELU), 
                                                        along_dim=-2)]],
                                                split_dim=-1)
        self.out_norm = nn.LayerNorm(features * 2)
        self.out_linear = nn.Linear(features * 2, output_classes)

    def forward(self, inp: torch.Tensor) -> torch.Tensor:
        return self.out_linear(self.out_norm(self.core(self.token_embd(inp) + self.pos_embd(inp))))


sequence = 1024
classes = 16
model = Reformer(sequence, 256, 6, 8, output_classes=classes)
out = model(torch.ones((16, sequence), dtype=torch.long))
assert out.size() == (16, sequence, classes)

Explanation

Most other RevNet libraries, such as MemCNN and Revtorch calculate both f() and g() in one go, to create one large computation. RevLib, on the other hand, brings Mesh TensorFlow's "reversible half residual and swap" to PyTorch. reversible_half_residual_and_swap computes only one of f() and g() and swaps the inputs and gradients. This way, the library only has to store one output as it can recover the other output during the backward pass.
Following Mesh TensorFlow's example, revlib also uses separate x1 and x2 tensors instead of concatenating and splitting at every step to reduce the cost of memory-bound operations.

RevNet's memory consumption doesn't scale with its depth, so it's significantly more memory-efficient for deep models. One problem in most implementations was that two tensors needed to be stored in the output, quadrupling the required memory. The high memory consumption rendered RevNet nearly useless for small networks, such as BERT, with its six layers.
RevLib works around this problem by storing only one output and two inputs for each forward pass, giving a model as small as BERT a >2x improvement!

Ignoring the dual-path structure of a RevNet, it usually used to be much slower than gradient checkpointing. However, RevLib uses minimal coupling functions and has no overhead between Sequence items, allowing it to train as fast as a comparable model with gradient checkpointing.

Owner
Lucas Nestler
German ai researcher
Lucas Nestler
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.

English|简体中文 ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在累积 40 余个典型 NLP 任务取得 SOTA 效果,并在 G

5.4k Jan 03, 2023
Code for using and evaluating SpanBERT.

SpanBERT This repository contains code and models for the paper: SpanBERT: Improving Pre-training by Representing and Predicting Spans. If you prefer

Meta Research 798 Dec 30, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
基于GRU网络的句子判断程序/A program based on GRU network for judging sentences

SentencesJudger SentencesJudger 是一个基于GRU神经网络的句子判断程序,基本的功能是判断文章中的某一句话是否为一个优美的句子。 English 如何使用SentencesJudger 确认Python运行环境 安装pyTorch与LTP python3 -m pip

8 Mar 24, 2022
This is a simple item2vec implementation using gensim for recbole

recbole-item2vec-model This is a simple item2vec implementation using gensim for recbole( https://recbole.io ) Usage When you want to run experiment f

Yusuke Fukasawa 2 Oct 06, 2022
✨Fast Coreference Resolution in spaCy with Neural Networks

✨ NeuralCoref 4.0: Coreference Resolution in spaCy with Neural Networks. NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolv

Hugging Face 2.6k Jan 04, 2023
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Megagon Labs 160 Dec 23, 2022
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
NLPShala , the best IDE for all Natural language processing tasks.

The revolutionary IDE for all NLP (Natural language processing) stuffs on the internet.

Abhi 3 Aug 08, 2021
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
多语言降噪预训练模型MBart的中文生成任务

mbart-chinese 基于mbart-large-cc25 的中文生成任务 Input source input: text + /s + lang_code target input: lang_code + text + /s Usage token_ids_mapping.jso

11 Sep 19, 2022
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022