Sequence model architectures from scratch in PyTorch

Overview

Sequence Models

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The training loop implements the learner design pattern from fast.ai in pure PyTorch, with access to the loop provided through callbacks. Detailed logging and graphs are also provided with python logging and wandb. Additional implementations will be added.

Table of Contents

Setup

Using Miniconda/Anaconda:

  1. cd path_to_repo
  2. conda create --name --file requirements.txt
  3. conda activate

Usage

Global configuration for training/inference is found in src/config.py. To train a model customize the configuration by selecting everything from the model (For the list of available models see src/model_dispatcher.py) to learning rate and run:

python src/train.py

Training saves the model in runs/ along with the preprocessor/tokenizer and logs. For loss and metric visualizations enable wandb experiment tracking.

To interact with a model make sure the model was trained beforehand. By keeping the same configuration you can then run:

python src/interact.py

Implementations

RNN

Implementation of the vanilla Recurrent Neural Network is available in src/models/rnn.py. This is the most basic RNN which is defined with the RNN Cell pictured below ( Credit for the visualization belongs to deeplearning.ai). This cell is being applied to every timestep of a sequence, producing an output and a hidden state that gets fed back to it in the next timestep. These cells are often represented in a chain (unrolled representation), but one must remember that every link of that chain represents the same RNN Cell, in other words, the weights are the same. This forces the RNN cell to learn to be able to handle any timestep/position in a sequence. Some of the key points in which RNNs differ compared to FFNNs are:

  • Concept of time is resembled in the architecture
  • Inputs can be of arbitrary lengths
  • Network keeps memory of past samples/batches

For more details see my post on the RNN.

LSTM

Implementation of the Long-Short Term Memory is available in src/models/lstm.py. LSTM was designed to handle common problems of RNN's which included vanishing gradients and memory limitations. This was accomplished with an additional hidden state called the cell state (long term memory) and so-called gates which guard it and act as memory management. Gradient problem was mitigated with this because, as seen in the visualization below (Credit for the visualization belongs to deeplearning.ai), the cell state doesn't pass through any linear layers. Cell state is influenced only through addition or element-wise multiplication with the output of gates. Gates and their short roles:

  • Forget gate: what information to keep and what to forget in the long memory
  • Input gate: what information needs to be updated in the long memory
  • Cell gate: how the information will be updated in the long memory
  • Output gate: what part of the long memory is relevant for the short memory

For more details view my post on the LSTM.

Original Paper: Long Thort-Term Memory

GRU

Implementation of the Gated Recurrent Unit is available in src/models/gru.py. GRU loses the cell state compared to the LSTM and has a simpler structure. Below is the architecture of a GRU cell. For a more detailed comparison, one might take a look at Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. GRU cell architecture is presented below (Credit for the visualization belongs to deeplearning.ai).

Original Paper: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

Sentiment Classifier

Implementation of a Sentiment Classifier is available in src/models/sentiment_clf.py. Dataset used for training is the IMDb dataset of positive and negative movie reviews available in data/imdb.csv.

Datapoint examples:

This movie is terrible but it has some good effects. , negative
...

Example config.py:

RUN_NAME='test'
BATCH_SIZE=128
WORKER_COUNT=4
EPOCHS=5
DATASET='imdb'
MODEL='rnnsentimentclf'
LOSS='BCEWithLogitsLoss'
LR=1e-3
OPTIMIZER='Adam'

A sentiment classifier is a model that takes as input a sentence and outputs its sentiment. There are many ways in which a sentiment classifier can be built. In this simple implementation, an embedding layer is used first as a learnable way to encode tokens into vectors. After that, an RNN (custom one is used but it can easily be swapped with the PyTorch one) is applied which produces output vectors across timesteps. Average pooling and max pooling is then applied to those vectors (shown to perform better than taking only the last output vector). Concatenated output from 2 pooling stages is fed through a linear layer and sigmoid to decide on the probability of positive sentiment.

Language Model

Implementation of a Language Model is available in src/models/language_model.py. Dataset used for training is the human numbers dataset introduced by fast.ai. It features a letter representation of the first 10,000 numbers written in English. It is a very simple benchmark for language models.

Datapoint examples:

one 
two 
three 
four 
five 
six 
seven 
...

Example config.py:

RUN_NAME='test'
BATCH_SIZE=128
WORKER_COUNT=4
EPOCHS=5
DATASET='human_numbers'
MODEL='rnnlanguagemodel'
LOSS='CrossEntropyLoss'
LR=1e-3
OPTIMIZER='Adam'

Language model's task is to predict the next word in a sequence. This simple implementation features an embedding layer followed by an RNN (custom one is used but it can easily be swapped with the PyTorch one). The output of the RNN goes through a linear layer which maps to a vector whose length is the same as the vocabulary size. The same vector then goes through softmax which normalizes the vector to resemble probabilities of each word in our vocabulary being the next word.

Citation

Please use this bibtex if you want to cite this repository:

@misc{Koch2021seqmodels,
  author = {Koch, Brando},
  title = {seq-models},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{}},
}

License

This repository is under an MIT License

License: MIT

Owner
Brando Koch
Machine Learning Engineer with experience in ML, DL , NLP & CV specializing in ConversationalAI & NLP.
Brando Koch
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022
Mastering Transformers, published by Packt

Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv

Packt 195 Jan 01, 2023
NVDA, the free and open source Screen Reader for Microsoft Windows

NVDA NVDA (NonVisual Desktop Access) is a free, open source screen reader for Microsoft Windows. It is developed by NV Access in collaboration with a

NV Access 1.6k Jan 07, 2023
Transformer related optimization, including BERT, GPT

This repository provides a script and recipe to run the highly optimized transformer-based encoder and decoder component, and it is tested and maintained by NVIDIA.

NVIDIA Corporation 1.7k Jan 04, 2023
Nmt - TensorFlow Neural Machine Translation Tutorial

Neural Machine Translation (seq2seq) Tutorial Authors: Thang Luong, Eugene Brevdo, Rui Zhao (Google Research Blogpost, Github) This version of the tut

6.1k Dec 29, 2022
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
Transformer Based Korean Sentence Spacing Corrector

TKOrrector Transformer Based Korean Sentence Spacing Corrector License Summary This solution is made available under Apache 2 license. See the LICENSE

Paul Hyung Yuel Kim 3 Apr 18, 2022
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
Easy to start. Use deep nerual network to predict the sentiment of movie review.

Easy to start. Use deep nerual network to predict the sentiment of movie review. Various methods, word2vec, tf-idf and df to generate text vectors. Various models including lstm and cov1d. Achieve f1

1 Nov 19, 2021
运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。

OlittleRer 运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。编程语言和工具包括Java、Python、Matlab、CPLEX、Gurobi、SCIP 等。 关注我们: 运筹小公众号 有问题可以直接在

运小筹 151 Dec 30, 2022
Fake Shakespearean Text Generator

Fake Shakespearean Text Generator This project contains an impelementation of stateful Char-RNN model to generate fake shakespearean texts. Files and

Recep YILDIRIM 1 Feb 15, 2022
Задания КЕГЭ по информатике 2021 на Python

КЕГЭ 2021 на Python В этом репозитории мои решения типовых заданий КЕГЭ по информатике в 2021 году, БЕСПЛАТНО! Задания Взяты с https://inf-ege.sdamgia

8 Oct 13, 2022
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hundreds of billions of parameters or larger.

GPT-NeoX An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hun

EleutherAI 3.1k Jan 08, 2023
End-to-end MLOps pipeline of a BERT model for emotion classification.

image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this

Dimitre Oliveira 4 Nov 06, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022