Fast, general, and tested differentiable structured prediction in PyTorch

Overview

Torch-Struct: Structured Prediction Library

Tests Coverage Status

A library of tested, GPU implementations of core structured prediction algorithms for deep learning applications.

  • HMM / LinearChain-CRF
  • HSMM / SemiMarkov-CRF
  • Dependency Tree-CRF
  • PCFG Binary Tree-CRF
  • ...

Designed to be used as efficient batched layers in other PyTorch code.

Tutorial paper describing methodology.

Getting Started

!pip install -qU git+https://github.com/harvardnlp/pytorch-struct
# Optional CUDA kernels for FastLogSemiring
!pip install -qU git+https://github.com/harvardnlp/genbmm
# For plotting.
!pip install -q matplotlib
import torch
from torch_struct import DependencyCRF, LinearChainCRF
import matplotlib.pyplot as plt
def show(x): plt.imshow(x.detach())
# Make some data.
vals = torch.zeros(2, 10, 10) + 1e-5
vals[:, :5, :5] = torch.rand(5)
vals[:, 5:, 5:] = torch.rand(5) 
dist = DependencyCRF(vals.log())
show(dist.log_potentials[0])

png

# Compute marginals
show(dist.marginals[0])

png

# Compute argmax
show(dist.argmax.detach()[0])

png

# Compute scoring and enumeration (forward / inside)
log_partition = dist.partition
max_score = dist.log_prob(dist.argmax)
# Compute samples 
show(dist.sample((1,)).detach()[0, 0])

png

# Padding/Masking built into library.
dist = DependencyCRF(vals, lengths=torch.tensor([10, 7]))
show(dist.marginals[0])
plt.show()
show(dist.marginals[1])

png

png

# Many other structured prediction approaches
chain = torch.zeros(2, 10, 10, 10) + 1e-5
chain[:, :, :, :] = vals.unsqueeze(-1).exp()
chain[:, :, :, :] += torch.eye(10, 10).view(1, 1, 10, 10) 
chain[:, 0, :, 0] = 1
chain[:, -1,9, :] = 1
chain = chain.log()

dist = LinearChainCRF(chain)
show(dist.marginals.detach()[0].sum(-1))

png

Library

Full docs: http://nlp.seas.harvard.edu/pytorch-struct/

Current distributions implemented:

  • LinearChainCRF
  • SemiMarkovCRF
  • DependencyCRF
  • NonProjectiveDependencyCRF
  • TreeCRF
  • NeuralPCFG / NeuralHMM

Each distribution includes:

  • Argmax, sampling, entropy, partition, masking, log_probs, k-max

Extensions:

  • Integration with torchtext, pytorch-transformers, dgl
  • Adapters for generative structured models (CFG / HMM / HSMM)
  • Common tree structured parameterizations TreeLSTM / SpanLSTM

Low-level API:

Everything implemented through semiring dynamic programming.

  • Log Marginals
  • Max and MAP computation
  • Sampling through specialized backprop
  • Entropy and first-order semirings.

Examples

Citation

@misc{alex2020torchstruct,
    title={Torch-Struct: Deep Structured Prediction Library},
    author={Alexander M. Rush},
    year={2020},
    eprint={2002.00876},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Comments
  • add tests for CKY

    add tests for CKY

    This PR fixes several bugs in k-best parsing with dist.topk() and includes a simple test to test the function.

    I made incremental changes so that existing modules relying on the CKY will not be affected.

    opened by zhaoyanpeng 8
  • 1st order cky implementation

    1st order cky implementation

    Hi,

    I'd like to contribute this implementation of a first-order cky-style crf with anchored rule potentials: $\phi[i,j,k,A,B,C] := \phi(A_{i,j} \rightarrow B_{i,k}, C{k+1,j})$.

    I also added code to the _Struct class that allows calculating marginals even if input tensors don't require a gradient (i.e., after model.eval())

    Please let me know if you'd like to see any changes.

    Thanks, Tom

    opened by teffland 6
  • Mini-batch setting with Semi Markov CRF

    Mini-batch setting with Semi Markov CRF

    I encounter learning instability when using a batch size > 1 with the semi-markovian CRF (loss goes to very large negative number), even when explicitly providing "lengths". I think the bug comes from the masking. The model train well when setting batch size 1.

    opened by urchade 5
  • Release on PyPI?

    Release on PyPI?

    Is there any interest on releasing pytorch-struct (and genbmm) on the official Python Package Index?

    I ran into this because I distribute my constituency parser on PyPI, and I just recently pushed a new version that depends on pytorch-struct: https://pypi.org/project/benepar/0.2.0a0/

    It turns out that packages on PyPI aren't allowed to depend on packages only hosted on github, so users of my parser can't just pip install benepar and have it work right away.

    opened by nikitakit 5
  • up sweep and down sweep

    up sweep and down sweep

    I'm interested in the parallel scan algorithm for the linear-chain CRF.

    I read the related paper in the tutorial and found that there are two steps: up sweep and down sweep in order to obtain all-prefix-sum.

    I think in this case, we use that algorithm to obtain all Z(x) with different lengths in a batch. But seems I couldn't find out the down sweep code in the repo. Can you point me out there?

    opened by allanj 5
  • [Bug] Implementation of Eisner's algorithm does not restrict the root number to 1

    [Bug] Implementation of Eisner's algorithm does not restrict the root number to 1

    Hey, I found that your implementation of Eisner's algorithm admits arbitrary root number, which is a very severe bug since dependency parsing usually has only one root token.

    In your DepTree.dp() method, you make a conversion to let the root token as the first token in the sentence. Imagine that the root x{0} attacks word x_{i}, I_{0,0} + C_{1, i} = I_{0, i} and I_{0, i} + C_{i,j} = C_{0, j} for some j < L where L is the length of sentence. Now complete span C_{0, j} still have opportunity to attach a new word x_{k} for j< k<=L, making multiple root attachment possible.

    Fortunately, I made some changes to your codes to restrict the root number to 1.

    ` def _dp(self, arc_scores_in, lengths=None, force_grad=False, cache=True): if arc_scores_in.dim() not in (3, 4): raise ValueError("potentials must have dim of 3 (unlabeled) or 4 (labeled)")

        labeled = arc_scores_in.dim() == 4
        semiring = self.semiring
        # arc_scores_in = _convert(arc_scores_in)
        arc_scores_in, batch, N, lengths = self._check_potentials(
            arc_scores_in, lengths
        )
        arc_scores_in.requires_grad_(True)
        arc_scores = semiring.sum(arc_scores_in) if labeled else arc_scores_in
        alpha = [
            [
                [
                    Chart((batch, N, N), arc_scores, semiring, cache=cache)
                    for _ in range(2)
                ]
                for _ in range(2)
            ]
            for _ in range(2)
        ]
    
        semiring.one_(alpha[A][C][L].data[:, :, :, 0].data)
        semiring.one_(alpha[A][C][R].data[:, :, :, 0].data)
        semiring.one_(alpha[B][C][L].data[:, :, :, -1].data)
        semiring.one_(alpha[B][C][R].data[:, :, :, -1].data)
    
    
        for k in range(1, N):
            f = torch.arange(N - k), torch.arange(k, N)
            ACL = alpha[A][C][L][: N - k, :k]
            ACR = alpha[A][C][R][: N - k, :k]
            BCL = alpha[B][C][L][k:, N - k :]
            BCR = alpha[B][C][R][k:, N - k :]
            x = semiring.dot(ACR, BCL)
            arcs_l = semiring.times(x, arc_scores[:, :, f[1], f[0]])
            alpha[A][I][L][: N - k, k] = arcs_l
            alpha[B][I][L][k:N, N - k - 1] = arcs_l
            arcs_r = semiring.times(x, arc_scores[:, :, f[0], f[1]])
            alpha[A][I][R][:N - k, k] = arcs_r
            alpha[B][I][R][k:N, N - k - 1] = arcs_r
            AIR = alpha[A][I][R][: N - k, 1 : k + 1]
            BIL = alpha[B][I][L][k:, N - k - 1 : N - 1]
            new = semiring.dot(ACL, BIL)
            alpha[A][C][L][: N - k, k] = new
            alpha[B][C][L][k:N, N - k - 1] = new
            new = semiring.dot(AIR, BCR)
            alpha[A][C][R][: N - k, k] = new
            alpha[B][C][R][k:N, N - k - 1] = new
    
        root_incomplete_span = semiring.times(alpha[A][C][L][0, :], arc_scores[:, :, torch.arange(N), torch.arange(N)])
        root =  [ Chart((batch,), arc_scores, semiring, cache=cache) for _ in range(N)]
        for k in range(N):
            AIR = root_incomplete_span[:, :, :k+1]
            BCR = alpha[B][C][R][k, N - (k+1):]
            root[k] = semiring.dot(AIR, BCR)
        v = torch.stack([root[l-1][:,i] for i, l in enumerate(lengths)], dim=1)
        return v, [arc_scores_in], alpha
    

    `

    Basically, I don't treat the first token as root anymore. I handle the root token just after the for-loop, so you may need handle the length variable. (length = length-1, root no longer be treated as part of sentence) . I tested the modified code and found it bug-free

    opened by sustcsonglin 4
  • Inference for the HMM model

    Inference for the HMM model

    Hello! I was playing with the HMM distribution and I obtained some results that I don't really understand. More precisely, I've set the following parameters

    t = torch.tensor([[0.99, 0.01], [0.01, 0.99]]).log()
    e = torch.tensor([[0.50, 0.50], [0.50, 0.50]]).log()
    i = torch.tensor(np.array([0.99, 0.01])).log()
    x = torch.randint(0, 2, size=(1, 8))
    

    and I was expecting the model to stay in the hidden state 0 regardless of the observed data x – it starts in state 0 and the transition matrix makes it very likely to maintain it. But when plotting the argmax, it appears that the model jumps from one state to the other:

    def show_chain(chain):
        plt.imshow(chain.detach().sum(-1).transpose(0, 1))
    
    dist = torch_struct.HMM(t, e, i, x)
    show_chain(dist.argmax[0])
    

    image

    I must be missing something obvious; but shouldn't dist.argmax correspond to argmax_z p(z | x, Θ)? Thank you!

    opened by danoneata 4
  • DependencyCRF partition function broken

    DependencyCRF partition function broken

    Getting the following in-place operation error when using the DependencyCRF:

    B,N = 3,50
    phi = torch.randn(B,N,N)
    DependencyCRF(phi).partition
    
    /usr/local/lib/python3.7/dist-packages/torch_struct/deptree.py in _check_potentials(self, arc_scores, lengths)
        121         arc_scores = semiring.convert(arc_scores)
        122         for b in range(batch):
    --> 123             semiring.zero_(arc_scores[:, b, lengths[b] + 1 :, :])
        124             semiring.zero_(arc_scores[:, b, :, lengths[b] + 1 :])
        125 
    
    /usr/local/lib/python3.7/dist-packages/torch_struct/semirings/semirings.py in zero_(xs)
        124     @staticmethod
        125     def zero_(xs):
    --> 126         return xs.fill_(-1e5)
        127 
        128     @staticmethod
    
    RuntimeError: a view of a leaf Variable that requires grad is being used in an in-place operation.
    
    opened by teffland 3
  • [Question] How to compute a marginal probability over a (contiguous) set of nodes?

    [Question] How to compute a marginal probability over a (contiguous) set of nodes?

    Hi.

    Thank you for the great library. I have one question that I hope you could help with.

    How can I compute a marginal probability over a (contiguous) set of nodes? Right now, I am using your LinearChain-CRF to do NER. In addition to the best sequence itself, I also need to compute the model’s confidence in its predicted labeling over a segment of input. For example, what is the probability that a span of tokens constitute a person name?

    I read your example and see how you get the marginal prob for each individual node. But I was not quite sure how to compute the marginal prob over a subset of nodes. If you could give any hint, it would be great.

    Thank you.

    opened by kimdev95 3
  • Get the score of dist.topk()

    Get the score of dist.topk()

    The topk() function returns top k predictions from the distribution, how to easily get the corresponding score of each prediction?

    By the way, when sentence lengths are short and the k value of topk is large, how to know the number of predictions that are valid? For the example in DependencyCRF, when sentence length is 2 and k is 5, only the top 3 predictions are valid I think.

    opened by wangxinyu0922 3
  • Labeled projective dependency CRF

    Labeled projective dependency CRF

    This is work in progress and isn't ready to merge yet.

    This seems to work for partition, but argmax and marginals don't return as I expect. Both return tensor of shape (B, N, N); I'd expect them to return (B, N, N, L) tensors instead. Any advice?

    opened by kmkurn 3
  • [Question] How to apply pytorch-struct for 2 dimensional data?

    [Question] How to apply pytorch-struct for 2 dimensional data?

    I could find examples of pytorch struct usage for 1d sequence data like text or video frame. But I'm trying to parse tables structure in pdf documents.

    Could you provide some hints where to start?

    opened by YuriyPryyma 4
  • end_class support for Autoregressive

    end_class support for Autoregressive

    end_class is not used for the Autoregressive module: https://github.com/harvardnlp/pytorch-struct/blob/7146de5659ff17ad7be53023c025ffd099866412/torch_struct/autoregressive.py#L49

    opened by urchade 1
  • Update examples to use newer torchtext APIs

    Update examples to use newer torchtext APIs

    opened by erip 2
  • Instable learning with SemiMarkov CRF

    Instable learning with SemiMarkov CRF

    HI,

    First, thank you for fixing #110 (@da03), the SemiCRF works better now, I was able to get good results on span extraction tasks. However, I still encounter a learning instability where the loss (neg logprob) gets negative after several steps (and the accuracy starts to drop). The same problem occurs with batch_size = 1. Below I put the learning curve (f1_score and log loss).

    (Maybe the bug comes from the masking of spans where (length, length + span_with) and length + span_with > length, but I am not sure.)

    Edit: I created a test and it seems that the masking is good. Maybe the log_prob computation or the to_parts function ?

    train_loss score

    opened by urchade 0
  • fix bug- missing assignment of spans from sentCFG in documentation

    fix bug- missing assignment of spans from sentCFG in documentation

    Noticed a small bug in the documentation and example of SentCFG. The return of dist.argmax is (terms, rules, init, spans), but example in documentation only assigns (term, rules, init) and gives dim mismatch. As such when running the example it breaks. This fix resolves this issue.

    opened by jdegange 0
Releases(v0.5)
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Semantic search for quotes.

squote A semantic search engine that takes some input text and returns some (questionably) relevant (questionably) famous quotes. Built with: bert-as-

cjwallace 11 Jun 25, 2022
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022
ConvBERT-Prod

ConvBERT 目录 0. 仓库结构 1. 简介 2. 数据集和复现精度 3. 准备数据与环境 3.1 准备环境 3.2 准备数据 3.3 准备模型 4. 开始使用 4.1 模型训练 4.2 模型评估 4.3 模型预测 5. 模型推理部署 5.1 基于Inference的推理 5.2 基于Serv

yujun 7 Apr 08, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 03, 2023
Natural Language Processing Tasks and Examples.

Natural Language Processing Tasks and Examples With the advancement of A.I. technology in recent years, natural language processing technology has bee

Soohwan Kim 53 Dec 20, 2022
A framework for cleaning Chinese dialog data

A framework for cleaning Chinese dialog data

Yida 136 Dec 20, 2022
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which

Clova AI Research 94 Dec 30, 2022
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati

1.5k Nov 14, 2022
A collection of GNN-based fake news detection models.

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Prefere

SafeGraph 251 Jan 01, 2023
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022
PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

Microsoft 105 Jan 08, 2022
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP prod

VinAI Research 109 Dec 02, 2022
Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Google Text-To-Speech Batch Prompt File Maker Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pr

Ponchotitlán 1 Aug 19, 2021
CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 03, 2023