Automated question generation and question answering from Turkish texts using text-to-text transformers

Overview
citation

If you use this software in your work, please cite as:

@article{akyon2021automated,
  title={Automated question generation and question answering from Turkish texts using text-to-text transformers},
  author={Akyon, Fatih Cagatay and Cavusoglu, Devrim and Cengiz, Cemil and Altinuc, Sinan Onur and Temizel, Alptekin},
  journal={arXiv preprint arXiv:2111.06476},
  year={2021}
}
install
git clone https://github.com/obss/turkish-question-generation.git
cd turkish-question-generation
pip install -r requirements.txt
train
  • start a training using args:
python run.py --model_name_or_path google/mt5-small  --output_dir runs/exp1 --do_train --do_eval --tokenizer_name_or_path mt5_qg_tokenizer --per_device_train_batch_size 4 --gradient_accumulation_steps 2 --learning_rate 1e-4 --seed 42 --save_total_limit 1
python run.py config.json
python run.py config.yaml
evaluate
  • arrange related params in config:
do_train: false
do_eval: true
eval_dataset_list: ["tquad2-valid", "xquad.tr"]
prepare_data: true
mt5_task_list: ["qa", "qg", "ans_ext"]
mt5_qg_format: "both"
no_cuda: false
  • start an evaluation:
python run.py config.yaml
neptune
  • install neptune:
pip install neptune-client
  • download config file and arrange neptune params:
run_name: 'exp1'
neptune_project: 'name/project'
neptune_api_token: 'YOUR_API_TOKEN'
  • start a training:
python train.py config.yaml
wandb
  • install wandb:
pip install wandb
  • download config file and arrange wandb params:
run_name: 'exp1'
wandb_project: 'turque'
  • start a training:
python train.py config.yaml
finetuned checkpoints
Name Model data
train
params
(M)
model size
(GB)
turque-s1 mt5-small tquad2-train+tquad2-valid+xquad.tr 60M 1.2GB
mt5-small-3task-both-tquad2 mt5-small tquad2-train 60M 1.2GB
mt5-small-3task-prepend-tquad2 mt5-small tquad2-train 60M 1.2GB
mt5-base-3task-both-tquad2 mt5-base tquad2-train 220M 2.3GB
format
  • answer extraction:

input:

Osman Bey 1258 yılında Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi." ">
"
      
        Osman Bey 1258 yılında Söğüt’te doğdu. 
       
         Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

       
      

target:


    
      1258 
     
       Söğüt’te 
      

      
     
    
  • question answering:

input:

"question: Osman Bey nerede doğmuştur? context: Osman Bey 1258 yılında Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

target:

"Söğüt’te"
  • question generation (prepend):

input:

"answer: Söğüt’te context: Osman Bey 1258 yılında Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

target:

"Osman Bey nerede doğmuştur?"
  • question generation (highlight):

input:

Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi." ">
"generate question: Osman Bey 1258 yılında 
     
       Söğüt’te 
      
        doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

      
     

target:

"Osman Bey nerede doğmuştur?"
  • question generation (both):

input:

Söğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi." ">
"answer: Söğüt’te context: Osman Bey 1258 yılında 
     
       Söğüt’te 
      
        doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatını kaybetmiştir.1281 yılında Osman Bey 23 yaşında iken Ahi teşkilatından olan Şeyh Edebali’nin kızı Malhun Hatun ile evlendi."

      
     

target:

"Osman Bey nerede doğmuştur?"
paper results
BERTurk-base and mT5-base QA evaluation results for TQuADv2 fine-tuning.

mT5-base QG evaluation results for single-task (ST) and multi-task (MT) for TQuADv2 fine-tuning.

TQuADv1 and TQuADv2 fine-tuning QG evaluation results for multi-task mT5 variants. MT-Both means, mT5 model is fine-tuned with ’Both’ input format and in a multi-task setting.

paper configs

You can find the config files used in the paper under configs/paper.

contributing

Before opening a PR:

  • Install required development packages:
pip install "black==21.7b0" "flake8==3.9.2" "isort==5.9.2"
  • Reformat with black and isort:
black . --config pyproject.toml
isort .
You might also like...
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Baseline code for Korean open domain question answering(ODQA)
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl

Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2018) dataset, where each question in the dev set is annotated to add a contextual disfluency using the paragraph as a source of distractors.

CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

BERT-based Financial Question Answering System
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Owner
Open Business Software Solutions
Open Source for Open Business
Open Business Software Solutions
TalkNet: Audio-visual active speaker detection Model

Is someone talking? TalkNet: Audio-visual active speaker detection Model This repository contains the code for our ACM MM 2021 paper, TalkNet, an acti

142 Dec 14, 2022
This repository contains the codes for LipGAN. LipGAN was published as a part of the paper titled "Towards Automatic Face-to-Face Translation".

LipGAN Generate realistic talking faces for any human speech and face identity. [Paper] | [Project Page] | [Demonstration Video] Important Update: A n

Rudrabha Mukhopadhyay 438 Dec 31, 2022
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
Code for papers "Generation-Augmented Retrieval for Open-Domain Question Answering" and "Reader-Guided Passage Reranking for Open-Domain Question Answering", ACL 2021

This repo provides the code of the following papers: (GAR) "Generation-Augmented Retrieval for Open-domain Question Answering", ACL 2021 (RIDER) "Read

morning 49 Dec 26, 2022
This is a simple item2vec implementation using gensim for recbole

recbole-item2vec-model This is a simple item2vec implementation using gensim for recbole( https://recbole.io ) Usage When you want to run experiment f

Yusuke Fukasawa 2 Oct 06, 2022
OpenAI CLIP text encoders for multiple languages!

Multilingual-CLIP OpenAI CLIP text encoders for any language Colab Notebook · Pre-trained Models · Report Bug Overview OpenAI recently released the pa

Fredrik Carlsson 481 Dec 30, 2022
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation

SITT The repo contains official PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation. Authors: Boyi Li Yin Cui T

Boyi Li 52 Jan 05, 2023
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2.

Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2. It is trained (finetuned) on a curated list of approximately 45K Python (~470MB) files gathered from the

Galois Autocompleter 91 Sep 23, 2022
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

ICTNLP 29 Oct 16, 2022
This is the source code of RPG (Reward-Randomized Policy Gradient)

RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (

40 Nov 25, 2022