COVID-19 Chatbot with Rasa 2.0: open source conversational AI

Overview

COVID-19 Chatbot with Rasa 2.0: open source conversational AI

Table of Contents

  1. introduction
  2. COVID-19 data
  3. Conversational flow
  4. Implementation
  5. Installation
  6. References

introduction

As natural language processing (NLP) technology and chatbot systems over the past few years have evolved quickly, also the usefulness of chatbots has increased. The motivation of chatbots is productivity; they have an instant access to information they refer to and are efficient in assisting users. (Brandtzaeg, 2017, Why people use chatbots. COVID-19 chatbot is an excellent use case example for the technology.

The content of a chatbot consists of the personality, conversation flows and the information it can deliver to the user. Personality is created by interactions and responses and by acting differently in different situations. These responses should be designed so that it maximises the engagement between the bot and the user (Katz, 2019, The Ultimate Guide to chatbot personality, Chatbots Magazine). The COVID-19 chatbot described here aims to use these principles, however due to the efforts required, in a rather minimalistic way leaving plenty of room for future improvements. e.g. in the area of how to handle chitchat.

COVID-19 data

The COVID-19 data format chosen here is defined by (https://api.rootnet.in/covid19-in/stats/history), which provides COVID-19 data freely for developers.

Conversation Flow

The conversation is initiated by the end-user. A greeting or a goodbye should reset any prior assumptions or knowledge collected by the bot during previous interactions. When time or COVID-19 detail are not contained in the query, the bot shall report the current and generic COVID-19 conditions. When the city is not provided in the query, the bot shall request for it. Any further specifics in the query should be answered in more detail if information is available.

3 Major queries that a user can perform apart from greeting,goodbye etc:

As this is a demo modal of how to integrate API in rasa. So I have designed this COVID-19 bot to answer limited queries as follows:

Query1

user can ask for current confirmed covid cases of any city in India

Examples:

-what is the number of cases currently in Delhi?
- how's the covid currently in Delhi?
- Tell me about covid currently in Maharashtra
- covid cases in Punjab currently

Query2

user can ask for total current confirmed cases of any two cities in India

Examples:

- Hey, what’s the total count of confirmed cases in Delhi, Maharashtra altogether?
- total confirmed cases in Delhi and Maharashtra together?
- total cases currently in Delhi and Maharashtra
- Get me the total current confirmed cases in Delhi and Maharashtra
- Tell me the total current confirmed cases in Delhi and Maharashtra

Query3

user can ask total cases between any dates(format: yyyy-mm-dd)

Examples:

- What’s the confirmed case count from 2020-10-01 to 2020-10-12?
- Hey, what's the current confirmed cases from 2020-10-01 to 2020-10-12?
- currently cases from 2020-10-01 to 2020-10-12?
- Hey, what’s the total count of confirmed cases from 2020-10-01 to 2020-10-12?
- total confirmed cases from 2020-10-01 to 2020-10-12 in India?
- total cases from from 2020-10-01 to 2020-10-12? in India
- Get me the total current confirmed cases from 2020-10-01 to 2020-10-12? in India
- Tell me the total current confirmed cases from 2020-10-01 to 2020-10-12? in India

Implementation

All components are defined to support the conversation flow . The end-user intents here are: who_are_you, covid_in_city, covid_in_two_city, covid_in_period, covid_without_city, greet, goodbye, affirm, deny, mood_great, mood_unhappy, bot_challenge, how_are_you, capabilities In Rasa, the slots can be used for passing information to and back between Rasa and external actions. Three slots are required: city,city2, init_date,final_date.

The responses where the personality is also largely created are: utter_greet, utter_goodbye, utter_ask city (triggers city_form), utter_iamabot, utter_capabilities, utter_im_well so on. This also includes the external action, action_covid, which fetches the COVID-19 data, parses it and generates the COVID-19 response sentence.

External actions are user defined functions written in python. Only one action, action_covid, is required. It is split in two separate functionalities here: actions.py which receives slots: city,city2,init_date and final_date from Rasa. It then queries the COVID-19 data for specific city from covid_api.py where a function covid_data(city,city2,init_data,final_data) is defined. The function returns the COVID-19 data(totalcases) after getting filtered out from (https://api.rootnet.in/covid19-in/stats/history) onecall json format to action_covid, which then forms a response sentense to be passed back to Rasa.

The user intents, stories and rules are used for training the NLP model. These intent examples cover tens of different ways of asking questions, and explaining to the model how to find the values for the three slots and what is the intent the user has. The stories contain the conversation flows and rules that will stop any conversation and force a different path.

Installation

Installation assumes existing installation of miniconda or anaconda. https://www.anaconda.com/

pip3 & Rasa

Below are the simple steps for creating a virtual environment, install pip3 and Rasa Open Source 2.0.

conda create -n RasaEnv python=3.7.6 
conda activate RasaEnv
conda install -c anaconda pip3
pip3 install rasa==2.8.11  

In case of issue, please refer to Rasa Open Source installation pages: https://rasa.com/docs/rasa/installation/

Creating and initialising a new project:

mkdir rasa
cd rasa
rasa init --no-prompt

This will create a new directlry, under which rasa creates all necessary directories and files.

Replace all files in the rasa directory with the files in the project.

Train the model and run the bot

Train the model with command

rasa train

There are additional actions that need to be started before starting the bot evaluation. These are in actions.py and covid_api.py files. To do so, run below commands on two different terminals:

rasa run actions

Start the discussion with rasabot:

rasa shell

References

- Rasa. (n.d.). Rasa: Open source conversational AI. URL: https://rasa.com

Owner
Aazim Parwaz
I am a 3rd year computer science undergraduate at NIT Srinagar
Aazim Parwaz
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
A Paper List for Speech Translation

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

138 Dec 24, 2022
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation

SITT The repo contains official PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation. Authors: Boyi Li Yin Cui T

Boyi Li 52 Jan 05, 2023
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

1 Nov 02, 2021
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
Machine learning classifiers to predict American Sign Language .

ASL-Classifiers American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United Stat

Tarek idrees 0 Feb 08, 2022
Few-shot Natural Language Generation for Task-Oriented Dialog

Few-shot Natural Language Generation for Task-Oriented Dialog This repository contains the dataset, source code and trained model for the following pa

172 Dec 13, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 07, 2023
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
This is an incredibly powerful calculator that is capable of many useful day-to-day functions.

Description 💻 This is an incredibly powerful calculator that is capable of many useful day-to-day functions. Such functions include solving basic ari

Jordan Leich 37 Nov 19, 2022
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.

TextDistance TextDistance -- python library for comparing distance between two or more sequences by many algorithms. Features: 30+ algorithms Pure pyt

Life4 3k Jan 06, 2023