COVID-19 Chatbot with Rasa 2.0: open source conversational AI

Overview

COVID-19 Chatbot with Rasa 2.0: open source conversational AI

Table of Contents

  1. introduction
  2. COVID-19 data
  3. Conversational flow
  4. Implementation
  5. Installation
  6. References

introduction

As natural language processing (NLP) technology and chatbot systems over the past few years have evolved quickly, also the usefulness of chatbots has increased. The motivation of chatbots is productivity; they have an instant access to information they refer to and are efficient in assisting users. (Brandtzaeg, 2017, Why people use chatbots. COVID-19 chatbot is an excellent use case example for the technology.

The content of a chatbot consists of the personality, conversation flows and the information it can deliver to the user. Personality is created by interactions and responses and by acting differently in different situations. These responses should be designed so that it maximises the engagement between the bot and the user (Katz, 2019, The Ultimate Guide to chatbot personality, Chatbots Magazine). The COVID-19 chatbot described here aims to use these principles, however due to the efforts required, in a rather minimalistic way leaving plenty of room for future improvements. e.g. in the area of how to handle chitchat.

COVID-19 data

The COVID-19 data format chosen here is defined by (https://api.rootnet.in/covid19-in/stats/history), which provides COVID-19 data freely for developers.

Conversation Flow

The conversation is initiated by the end-user. A greeting or a goodbye should reset any prior assumptions or knowledge collected by the bot during previous interactions. When time or COVID-19 detail are not contained in the query, the bot shall report the current and generic COVID-19 conditions. When the city is not provided in the query, the bot shall request for it. Any further specifics in the query should be answered in more detail if information is available.

3 Major queries that a user can perform apart from greeting,goodbye etc:

As this is a demo modal of how to integrate API in rasa. So I have designed this COVID-19 bot to answer limited queries as follows:

Query1

user can ask for current confirmed covid cases of any city in India

Examples:

-what is the number of cases currently in Delhi?
- how's the covid currently in Delhi?
- Tell me about covid currently in Maharashtra
- covid cases in Punjab currently

Query2

user can ask for total current confirmed cases of any two cities in India

Examples:

- Hey, what’s the total count of confirmed cases in Delhi, Maharashtra altogether?
- total confirmed cases in Delhi and Maharashtra together?
- total cases currently in Delhi and Maharashtra
- Get me the total current confirmed cases in Delhi and Maharashtra
- Tell me the total current confirmed cases in Delhi and Maharashtra

Query3

user can ask total cases between any dates(format: yyyy-mm-dd)

Examples:

- What’s the confirmed case count from 2020-10-01 to 2020-10-12?
- Hey, what's the current confirmed cases from 2020-10-01 to 2020-10-12?
- currently cases from 2020-10-01 to 2020-10-12?
- Hey, what’s the total count of confirmed cases from 2020-10-01 to 2020-10-12?
- total confirmed cases from 2020-10-01 to 2020-10-12 in India?
- total cases from from 2020-10-01 to 2020-10-12? in India
- Get me the total current confirmed cases from 2020-10-01 to 2020-10-12? in India
- Tell me the total current confirmed cases from 2020-10-01 to 2020-10-12? in India

Implementation

All components are defined to support the conversation flow . The end-user intents here are: who_are_you, covid_in_city, covid_in_two_city, covid_in_period, covid_without_city, greet, goodbye, affirm, deny, mood_great, mood_unhappy, bot_challenge, how_are_you, capabilities In Rasa, the slots can be used for passing information to and back between Rasa and external actions. Three slots are required: city,city2, init_date,final_date.

The responses where the personality is also largely created are: utter_greet, utter_goodbye, utter_ask city (triggers city_form), utter_iamabot, utter_capabilities, utter_im_well so on. This also includes the external action, action_covid, which fetches the COVID-19 data, parses it and generates the COVID-19 response sentence.

External actions are user defined functions written in python. Only one action, action_covid, is required. It is split in two separate functionalities here: actions.py which receives slots: city,city2,init_date and final_date from Rasa. It then queries the COVID-19 data for specific city from covid_api.py where a function covid_data(city,city2,init_data,final_data) is defined. The function returns the COVID-19 data(totalcases) after getting filtered out from (https://api.rootnet.in/covid19-in/stats/history) onecall json format to action_covid, which then forms a response sentense to be passed back to Rasa.

The user intents, stories and rules are used for training the NLP model. These intent examples cover tens of different ways of asking questions, and explaining to the model how to find the values for the three slots and what is the intent the user has. The stories contain the conversation flows and rules that will stop any conversation and force a different path.

Installation

Installation assumes existing installation of miniconda or anaconda. https://www.anaconda.com/

pip3 & Rasa

Below are the simple steps for creating a virtual environment, install pip3 and Rasa Open Source 2.0.

conda create -n RasaEnv python=3.7.6 
conda activate RasaEnv
conda install -c anaconda pip3
pip3 install rasa==2.8.11  

In case of issue, please refer to Rasa Open Source installation pages: https://rasa.com/docs/rasa/installation/

Creating and initialising a new project:

mkdir rasa
cd rasa
rasa init --no-prompt

This will create a new directlry, under which rasa creates all necessary directories and files.

Replace all files in the rasa directory with the files in the project.

Train the model and run the bot

Train the model with command

rasa train

There are additional actions that need to be started before starting the bot evaluation. These are in actions.py and covid_api.py files. To do so, run below commands on two different terminals:

rasa run actions

Start the discussion with rasabot:

rasa shell

References

- Rasa. (n.d.). Rasa: Open source conversational AI. URL: https://rasa.com

Owner
Aazim Parwaz
I am a 3rd year computer science undergraduate at NIT Srinagar
Aazim Parwaz
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP prod

VinAI Research 109 Dec 02, 2022
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
Beyond Paragraphs: NLP for Long Sequences

Beyond Paragraphs: NLP for Long Sequences

AI2 338 Dec 02, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022
Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

ICTNLP 29 Oct 16, 2022
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
中文空间语义理解评测

中文空间语义理解评测 最新消息 2021-04-10 🚩 排行榜发布: Leaderboard 2021-04-05 基线系统发布: SpaCE2021-Baseline 2021-04-05 开放数据提交: 提交结果 2021-04-01 开放报名: 我要报名 2021-04-01 数据集 pa

40 Jan 04, 2023
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022
ConferencingSpeech2022; Non-intrusive Objective Speech Quality Assessment (NISQA) Challenge

ConferencingSpeech 2022 challenge This repository contains the datasets list and scripts required for the ConferencingSpeech 2022 challenge. For more

21 Dec 02, 2022
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
Partially offline multi-language translator built upon Huggingface transformers.

Translate Command-line interface to translation pipelines, powered by Huggingface transformers. This tool can download translation models, and then us

Richard Jarry 8 Oct 25, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
Natural language computational chemistry command line interface.

nlcc Install pip install nlcc Must have Open-AI Codex key: export OPENAI_API_KEY=your key here then nlcc key bindings ctrl-w copy to clipboard (Note

Andrew White 37 Dec 14, 2022
Words_And_Phrases - Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours

Words_And_Phrases Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours Abbreviations Abbreviation

Subhadeep Mandal 1 Feb 01, 2022
Codes for coreference-aware machine reading comprehension

Data and code for the paper "Tracing Origins: Coreference-aware Machine Reading Comprehension" at ACL2022. Dataset There are three folders for our thr

11 Sep 29, 2022
Script to generate VAD dataset used in Asteroid recipe

About the dataset LibriVAD is an open source dataset for voice activity detection in noisy environments. It is derived from LibriSpeech signals (clean

11 Sep 15, 2022
Chinese version of GPT2 training code, using BERT tokenizer.

GPT2-Chinese Description Chinese version of GPT2 training code, using BERT tokenizer or BPE tokenizer. It is based on the extremely awesome repository

Zeyao Du 5.6k Jan 04, 2023