Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Overview

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation

License: MIT PWC

This repository is the pytorch implementation of our paper:

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation
Muhammad Zubair Irshad, Chih-Yao Ma, Zsolt Kira
International Conference on Robotics and Automation (ICRA), 2021

[Project Page] [arXiv] [GitHub]

Installation

Clone the current repository and required submodules:

git clone https://github.com/GT-RIPL/robo-vln
cd robo-vln
  
export robovln_rootdir=$PWD
    
git submodule init 
git submodule update

Habitat and Other Dependencies

Install robo-vln dependencies as follows:

conda create -n habitat python=3.6 cmake=3.14.0
cd $robovln_rootdir
python -m pip install -r requirements.txt

We use modified versions of Habitat-Sim and Habitat-API to support continuous control/action-spaces in Habitat Simulator. The details regarding continuous action spaces and converting discrete VLN dataset into continuous control formulation can be found in our paper. The specific commits of our modified Habitat-Sim and Habitat-API versions are mentioned below.

# installs both habitat-api and habitat_baselines
cd $robovln_rootdir/environments/habitat-lab
python -m pip install -r requirements.txt
python -m pip install -r habitat_baselines/rl/requirements.txt
python -m pip install -r habitat_baselines/rl/ddppo/requirements.txt
python setup.py develop --all
	
# Install habitat-sim
cd $robovln_rootdir/environments/habitat-sim
python setup.py install --headless --with-cuda

Data

Similar to Habitat-API, we expect a data folder (or symlink) with a particular structure in the top-level directory of this project.

Matterport3D

We utilize Matterport3D (MP3D) photo-realistic scene reconstructions to train and evaluate our agent. A total of 90 Matterport3D scenes are used for robo-vln. Here is the official Matterport3D Dataset download link and associated instructions: project webpage. To download the scenes needed for robo-vln, run the following commands:

# requires running with python 2.7
python download_mp.py --task habitat -o data/scene_datasets/mp3d/

Extract this data to data/scene_datasets/mp3d such that it has the form data/scene_datasets/mp3d/{scene}/{scene}.glb.

Dataset

The Robo-VLN dataset is a continuous control formualtion of the VLN-CE dataset by Krantz et al ported over from Room-to-Room (R2R) dataset created by Anderson et al. The details regarding converting discrete VLN dataset into continuous control formulation can be found in our paper.

Dataset Path to extract Size
robo_vln_v1.zip data/datasets/robo_vln_v1 76.9 MB

Robo-VLN Dataset

The dataset robo_vln_v1 contains the train, val_seen, and val_unseen splits.

  • train: 7739 episodes
  • val_seen: 570 episodes
  • val_unseen: 1224 episodes

Format of {split}.json.gz

{
    'episodes' = [
        {
            'episode_id': 4991,
            'trajectory_id': 3279,
            'scene_id': 'mp3d/JeFG25nYj2p/JeFG25nYj2p.glb',
            'instruction': {
                'instruction_text': 'Walk past the striped area rug...',
                'instruction_tokens': [2384, 1589, 2202, 2118, 133, 1856, 9]
            },
            'start_position': [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            'start_rotation': [0, 0.3332950713608026, 0, 0.9428225683587541],
            'goals': [
                {
                    'position': [3.360340118408203, 0.09358400106430054, 3.07817006111145], 
                    'radius': 3.0
                }
            ],
            'reference_path': [
                [10.257800102233887, 0.09358400106430054, -2.379739999771118], 
                [9.434900283813477, 0.09358400106430054, -1.3061100244522095]
                ...
                [3.360340118408203, 0.09358400106430054, 3.07817006111145],
            ],
            'info': {'geodesic_distance': 9.65537166595459},
        },
        ...
    ],
    'instruction_vocab': [
        'word_list': [..., 'orchids', 'order', 'orient', ...],
        'word2idx_dict': {
            ...,
            'orchids': 1505,
            'order': 1506,
            'orient': 1507,
            ...
        },
        'itos': [..., 'orchids', 'order', 'orient', ...],
        'stoi': {
            ...,
            'orchids': 1505,
            'order': 1506,
            'orient': 1507,
            ...
        },
        'num_vocab': 2504,
        'UNK_INDEX': 1,
        'PAD_INDEX': 0,
    ]
}
  • Format of {split}_gt.json.gz
{
    '4991': {
        'actions': [
          ...
          [-0.999969482421875, 1.0],
          [-0.9999847412109375, 0.15731772780418396],
          ...
          ],
        'forward_steps': 325,
        'locations': [
            [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            ...
            [-12.644463539123535, 0.1518409252166748, 4.2241311073303220]
        ]
    }
    ...
}

Depth Encoder Weights

Similar to VLN-CE, our learning-based models utilizes a depth encoder pretained on a large-scale point-goal navigation task i.e. DDPPO. We utilize depth pretraining by using the DDPPO features from the ResNet50 from the original paper. The pretrained network can be downloaded here. Extract the contents of ddppo-models.zip to data/ddppo-models/{model}.pth.

Training and reproducing results

We use run.py script to train and evaluate all of our baseline models. Use run.py along with a configuration file and a run type (either train or eval) to train or evaluate:

python run.py --exp-config path/to/config.yaml --run-type {train | eval}

For lists of modifiable configuration options, see the default task config and experiment config files.

Evaluating Models

All models can be evaluated using python run.py --exp-config path/to/config.yaml --run-type eval. The relevant config entries for evaluation are:

EVAL_CKPT_PATH_DIR  # path to a checkpoint or a directory of checkpoints
EVAL.USE_CKPT_CONFIG  # if True, use the config saved in the checkpoint file
EVAL.SPLIT  # which dataset split to evaluate on (typically val_seen or val_unseen)
EVAL.EPISODE_COUNT  # how many episodes to evaluate

If EVAL.EPISODE_COUNT is equal to or greater than the number of episodes in the evaluation dataset, all episodes will be evaluated. If EVAL_CKPT_PATH_DIR is a directory, one checkpoint will be evaluated at a time. If there are no more checkpoints to evaluate, the script will poll the directory every few seconds looking for a new one. Each config file listed in the next section is capable of both training and evaluating the model it is accompanied by.

Off-line Data Buffer

All our models require an off-line data buffer for training. To collect the continuous control dataset for both train and val_seen splits, run the following commands before training (Please note that it would take some time on a single GPU to store data. Please also make sure to dedicate around ~1.5 TB of hard-disk space for data collection):

Collect data buffer for train split:

python run.py --exp-config robo_vln_baselines/config/paper_configs/robovln_data_train.yaml --run-type train

Collect data buffer for val_seen split:

python run.py --exp-config robo_vln_baselines/config/paper_configs/robovln_data_val.yaml --run-type train 

CUDA

We use 2 GPUs to train our Hierarchical Model hierarchical_cma.yaml. To train the hierarchical model, dedicate 2 GPUs for training as follows:

CUDA_VISIBLE_DEVICES=0,1 python run.py --exp-config robo_vln_baselines/config/paper_configs/hierarchical_cma.yaml --run-type train

Models/Results From the Paper

Model val_seen SPL val_unseen SPL Config
Seq2Seq 0.34 0.30 seq2seq_robo.yaml
PM 0.27 0.24 seq2seq_robo_pm.yaml
CMA 0.25 0.25 cma.yaml
HCM (Ours) 0.43 0.40 hierarchical_cma.yaml
Legend
Seq2Seq Sequence-to-Sequence. Please see our paper on modification made to the model to match the continuous action spaces in robo-vln
PM Progress monitor
CMA Cross-Modal Attention model. Please see our paper on modification made to the model to match the continuous action spaces in robo-vln
HCM Hierarchical Cross-Modal Agent Module (The proposed hierarchical VLN model from our paper).

Pretrained Model

We provide pretrained model for our best Hierarchical Cross-Modal Agent (HCM). Pre-trained Model can be downloaded as follows:

Pre-trained Model Size
HCM_Agent.pth 691 MB

Citation

If you find this repository useful, please cite our paper:

@inproceedings{irshad2021hierarchical,
title={Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation},
author={Muhammad Zubair Irshad and Chih-Yao Ma and Zsolt Kira},
booktitle={Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)},
year={2021},
url={https://arxiv.org/abs/2104.10674}
}

Acknowledgments

  • This code is built upon the implementation from VLN-CE
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Zheyuan (David) Liu 29 Nov 17, 2022
A simple word search made in python

Word Search Puzzle A simple word search made in python Usage $ python3 main.py -h usage: main.py [-h] [-c] [-f FILE] Generates a word s

Magoninho 16 Mar 10, 2022
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

Dirk Neuhäuser 4 Apr 06, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 30, 2022
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
Python api wrapper for JellyFish Lights

Python api wrapper for JellyFish Lights The hope is to make this a pip installable package Current capabalilities: Connects to a local JellyFish Light

10 Dec 18, 2022
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
Basic yet complete Machine Learning pipeline for NLP tasks

Basic yet complete Machine Learning pipeline for NLP tasks This repository accompanies the article on building basic yet complete ML pipelines for sol

Ivan 20 Aug 22, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
Grover is a model for Neural Fake News -- both generation and detectio

Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.

Rowan Zellers 856 Dec 24, 2022
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Poetry PEP 517 Build Backend & Core Utilities

Poetry Core A PEP 517 build backend implementation developed for Poetry. This project is intended to be a light weight, fully compliant, self-containe

Poetry 293 Jan 02, 2023