Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Overview

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation

License: MIT PWC

This repository is the pytorch implementation of our paper:

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation
Muhammad Zubair Irshad, Chih-Yao Ma, Zsolt Kira
International Conference on Robotics and Automation (ICRA), 2021

[Project Page] [arXiv] [GitHub]

Installation

Clone the current repository and required submodules:

git clone https://github.com/GT-RIPL/robo-vln
cd robo-vln
  
export robovln_rootdir=$PWD
    
git submodule init 
git submodule update

Habitat and Other Dependencies

Install robo-vln dependencies as follows:

conda create -n habitat python=3.6 cmake=3.14.0
cd $robovln_rootdir
python -m pip install -r requirements.txt

We use modified versions of Habitat-Sim and Habitat-API to support continuous control/action-spaces in Habitat Simulator. The details regarding continuous action spaces and converting discrete VLN dataset into continuous control formulation can be found in our paper. The specific commits of our modified Habitat-Sim and Habitat-API versions are mentioned below.

# installs both habitat-api and habitat_baselines
cd $robovln_rootdir/environments/habitat-lab
python -m pip install -r requirements.txt
python -m pip install -r habitat_baselines/rl/requirements.txt
python -m pip install -r habitat_baselines/rl/ddppo/requirements.txt
python setup.py develop --all
	
# Install habitat-sim
cd $robovln_rootdir/environments/habitat-sim
python setup.py install --headless --with-cuda

Data

Similar to Habitat-API, we expect a data folder (or symlink) with a particular structure in the top-level directory of this project.

Matterport3D

We utilize Matterport3D (MP3D) photo-realistic scene reconstructions to train and evaluate our agent. A total of 90 Matterport3D scenes are used for robo-vln. Here is the official Matterport3D Dataset download link and associated instructions: project webpage. To download the scenes needed for robo-vln, run the following commands:

# requires running with python 2.7
python download_mp.py --task habitat -o data/scene_datasets/mp3d/

Extract this data to data/scene_datasets/mp3d such that it has the form data/scene_datasets/mp3d/{scene}/{scene}.glb.

Dataset

The Robo-VLN dataset is a continuous control formualtion of the VLN-CE dataset by Krantz et al ported over from Room-to-Room (R2R) dataset created by Anderson et al. The details regarding converting discrete VLN dataset into continuous control formulation can be found in our paper.

Dataset Path to extract Size
robo_vln_v1.zip data/datasets/robo_vln_v1 76.9 MB

Robo-VLN Dataset

The dataset robo_vln_v1 contains the train, val_seen, and val_unseen splits.

  • train: 7739 episodes
  • val_seen: 570 episodes
  • val_unseen: 1224 episodes

Format of {split}.json.gz

{
    'episodes' = [
        {
            'episode_id': 4991,
            'trajectory_id': 3279,
            'scene_id': 'mp3d/JeFG25nYj2p/JeFG25nYj2p.glb',
            'instruction': {
                'instruction_text': 'Walk past the striped area rug...',
                'instruction_tokens': [2384, 1589, 2202, 2118, 133, 1856, 9]
            },
            'start_position': [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            'start_rotation': [0, 0.3332950713608026, 0, 0.9428225683587541],
            'goals': [
                {
                    'position': [3.360340118408203, 0.09358400106430054, 3.07817006111145], 
                    'radius': 3.0
                }
            ],
            'reference_path': [
                [10.257800102233887, 0.09358400106430054, -2.379739999771118], 
                [9.434900283813477, 0.09358400106430054, -1.3061100244522095]
                ...
                [3.360340118408203, 0.09358400106430054, 3.07817006111145],
            ],
            'info': {'geodesic_distance': 9.65537166595459},
        },
        ...
    ],
    'instruction_vocab': [
        'word_list': [..., 'orchids', 'order', 'orient', ...],
        'word2idx_dict': {
            ...,
            'orchids': 1505,
            'order': 1506,
            'orient': 1507,
            ...
        },
        'itos': [..., 'orchids', 'order', 'orient', ...],
        'stoi': {
            ...,
            'orchids': 1505,
            'order': 1506,
            'orient': 1507,
            ...
        },
        'num_vocab': 2504,
        'UNK_INDEX': 1,
        'PAD_INDEX': 0,
    ]
}
  • Format of {split}_gt.json.gz
{
    '4991': {
        'actions': [
          ...
          [-0.999969482421875, 1.0],
          [-0.9999847412109375, 0.15731772780418396],
          ...
          ],
        'forward_steps': 325,
        'locations': [
            [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            [10.257800102233887, 0.09358400106430054, -2.379739999771118],
            ...
            [-12.644463539123535, 0.1518409252166748, 4.2241311073303220]
        ]
    }
    ...
}

Depth Encoder Weights

Similar to VLN-CE, our learning-based models utilizes a depth encoder pretained on a large-scale point-goal navigation task i.e. DDPPO. We utilize depth pretraining by using the DDPPO features from the ResNet50 from the original paper. The pretrained network can be downloaded here. Extract the contents of ddppo-models.zip to data/ddppo-models/{model}.pth.

Training and reproducing results

We use run.py script to train and evaluate all of our baseline models. Use run.py along with a configuration file and a run type (either train or eval) to train or evaluate:

python run.py --exp-config path/to/config.yaml --run-type {train | eval}

For lists of modifiable configuration options, see the default task config and experiment config files.

Evaluating Models

All models can be evaluated using python run.py --exp-config path/to/config.yaml --run-type eval. The relevant config entries for evaluation are:

EVAL_CKPT_PATH_DIR  # path to a checkpoint or a directory of checkpoints
EVAL.USE_CKPT_CONFIG  # if True, use the config saved in the checkpoint file
EVAL.SPLIT  # which dataset split to evaluate on (typically val_seen or val_unseen)
EVAL.EPISODE_COUNT  # how many episodes to evaluate

If EVAL.EPISODE_COUNT is equal to or greater than the number of episodes in the evaluation dataset, all episodes will be evaluated. If EVAL_CKPT_PATH_DIR is a directory, one checkpoint will be evaluated at a time. If there are no more checkpoints to evaluate, the script will poll the directory every few seconds looking for a new one. Each config file listed in the next section is capable of both training and evaluating the model it is accompanied by.

Off-line Data Buffer

All our models require an off-line data buffer for training. To collect the continuous control dataset for both train and val_seen splits, run the following commands before training (Please note that it would take some time on a single GPU to store data. Please also make sure to dedicate around ~1.5 TB of hard-disk space for data collection):

Collect data buffer for train split:

python run.py --exp-config robo_vln_baselines/config/paper_configs/robovln_data_train.yaml --run-type train

Collect data buffer for val_seen split:

python run.py --exp-config robo_vln_baselines/config/paper_configs/robovln_data_val.yaml --run-type train 

CUDA

We use 2 GPUs to train our Hierarchical Model hierarchical_cma.yaml. To train the hierarchical model, dedicate 2 GPUs for training as follows:

CUDA_VISIBLE_DEVICES=0,1 python run.py --exp-config robo_vln_baselines/config/paper_configs/hierarchical_cma.yaml --run-type train

Models/Results From the Paper

Model val_seen SPL val_unseen SPL Config
Seq2Seq 0.34 0.30 seq2seq_robo.yaml
PM 0.27 0.24 seq2seq_robo_pm.yaml
CMA 0.25 0.25 cma.yaml
HCM (Ours) 0.43 0.40 hierarchical_cma.yaml
Legend
Seq2Seq Sequence-to-Sequence. Please see our paper on modification made to the model to match the continuous action spaces in robo-vln
PM Progress monitor
CMA Cross-Modal Attention model. Please see our paper on modification made to the model to match the continuous action spaces in robo-vln
HCM Hierarchical Cross-Modal Agent Module (The proposed hierarchical VLN model from our paper).

Pretrained Model

We provide pretrained model for our best Hierarchical Cross-Modal Agent (HCM). Pre-trained Model can be downloaded as follows:

Pre-trained Model Size
HCM_Agent.pth 691 MB

Citation

If you find this repository useful, please cite our paper:

@inproceedings{irshad2021hierarchical,
title={Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation},
author={Muhammad Zubair Irshad and Chih-Yao Ma and Zsolt Kira},
booktitle={Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)},
year={2021},
url={https://arxiv.org/abs/2104.10674}
}

Acknowledgments

  • This code is built upon the implementation from VLN-CE
My Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks using Tensorflow

Easy Data Augmentation Implementation This repository contains my Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Per

Aflah 9 Oct 31, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati

1.5k Nov 14, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
Mapping a variable-length sentence to a fixed-length vector using BERT model

Are you looking for X-as-service? Try the Cloud-Native Neural Search Framework for Any Kind of Data bert-as-service Using BERT model as a sentence enc

Han Xiao 11.1k Jan 01, 2023
The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank

Main Idea The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank Semantic Search Re

Sergio Arnaud Gomez 2 Jan 28, 2022
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021