Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

Overview

CodeBERT-Implementation

In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages.
We are interested in evaluating CodeBERT specifically in Natural language code search. Given a natural language as the input, the objective of code search is to find the most semantically related code from a collection of codes.

This code was implemented on a 64-bit Windows system with 8 GB ram and GeForce GTX 1650 4GB graphics card.

Due to limited compuational power, we have trained and evaluated the model on a smaller data compared to the original data.

Language Training data size Validation data size Test data size for batch_0
Original Our Original Our Original Our
Ruby 97580 500 4417 100 1000000 20000
Go 635653 500 28483 100 1000000 20000
PHP 1047404 500 52029 100 1000000 20000
Python 824342 500 46213 100 1000000 20000
Java 908886 500 30655 100 1000000 20000
Javascript 247773 500 16505 100 1000000 20000

Compared to the code in original repo, code in this repo can be implemented directly in Windows system without any hindrance. We have already provided a subset of pre-processed data for batch_0 (shown in table under Testing data size) in ./data/codesearch/test/

Fine tuning pretrained model CodeBERT on individual languages

lang = go
cd CodeBERT-Implementation
! python run_classifier.py --model_type roberta --task_name codesearch --do_train --do_eval --eval_all_checkpoints --train_file train_short.txt --dev_file valid_short.txt --max_seq_length 50 --per_gpu_train_batch_size 8 --per_gpu_eval_batch_size 8 --learning_rate 1e-5 --num_train_epochs 1 --gradient_accumulation_steps 1 --overwrite_output_dir --data_dir CodeBERT-Implementation/data/codesearch/train_valid/$lang/ --output_dir ./models/$lang/ --model_name_or_path microsoft/codebert-base

Inference and Evaluation

lang = go
idx = 0
! python run_classifier.py --model_type roberta --model_name_or_path microsoft/codebert-base --task_name codesearch --do_predict --output_dir CodeBERT-Implementation/data/models/$lang --data_dir CodeBERT-Implementation/data/codesearch/test/$lang/ --max_seq_length 50 --per_gpu_train_batch_size 8 --per_gpu_eval_batch_size 8 --learning_rate 1e-5 --num_train_epochs 1 --test_file batch_short_${idx}.txt --pred_model_dir ./models/ruby/checkpoint-best/ --test_result_dir ./results/$lang/${idx}_batch_result.txt
! python mrr.py

The Mean Evaluation Rank (MER), the evaluation mteric, for the subset of data is given as follows:

Language MER
Ruby 0.0037
Go 0.0034
PHP 0.0044
Python 0.0052
Java 0.0033
Java script 0.0054

The accuracy is way less than what is reported in the paper. However, the purpose of this repo is to provide the user, ready to implement data of CodeBERT without any heavy downloads. We have also included the prediction results in this repo corresponding to the test data.

Owner
Tanuj Sur
Student at Chennai Mathematical Institute | Research Intern at TCS Research and Innovation Labs
Tanuj Sur
Official PyTorch implementation of SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 29, 2022
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022
NLPShala , the best IDE for all Natural language processing tasks.

The revolutionary IDE for all NLP (Natural language processing) stuffs on the internet.

Abhi 3 Aug 08, 2021
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Bloomberg 8 Nov 09, 2022
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
Maha is a text processing library specially developed to deal with Arabic text.

An Arabic text processing library intended for use in NLP applications Maha is a text processing library specially developed to deal with Arabic text.

Mohammad Al-Fetyani 184 Nov 27, 2022
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
Sapiens is a human antibody language model based on BERT.

Sapiens: Human antibody language model ____ _ / ___| __ _ _ __ (_) ___ _ __ ___ \___ \ / _` | '_ \| |/ _ \ '

Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc. 13 Nov 20, 2022
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022
Poetry PEP 517 Build Backend & Core Utilities

Poetry Core A PEP 517 build backend implementation developed for Poetry. This project is intended to be a light weight, fully compliant, self-containe

Poetry 293 Jan 02, 2023
Saptak Bhoumik 14 May 24, 2022
DiY Oxygen Concentrator based on the OxiKit

M19O2 DiY Oxygen Concentrator based on / inspired by the OxiKit, OpenOx, Marut, RepRap and Project Apollo platforms. About Read about the project on H

Maker's Asylum 62 Dec 22, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022