Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

Overview

CodeBERT-Implementation

In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages.
We are interested in evaluating CodeBERT specifically in Natural language code search. Given a natural language as the input, the objective of code search is to find the most semantically related code from a collection of codes.

This code was implemented on a 64-bit Windows system with 8 GB ram and GeForce GTX 1650 4GB graphics card.

Due to limited compuational power, we have trained and evaluated the model on a smaller data compared to the original data.

Language Training data size Validation data size Test data size for batch_0
Original Our Original Our Original Our
Ruby 97580 500 4417 100 1000000 20000
Go 635653 500 28483 100 1000000 20000
PHP 1047404 500 52029 100 1000000 20000
Python 824342 500 46213 100 1000000 20000
Java 908886 500 30655 100 1000000 20000
Javascript 247773 500 16505 100 1000000 20000

Compared to the code in original repo, code in this repo can be implemented directly in Windows system without any hindrance. We have already provided a subset of pre-processed data for batch_0 (shown in table under Testing data size) in ./data/codesearch/test/

Fine tuning pretrained model CodeBERT on individual languages

lang = go
cd CodeBERT-Implementation
! python run_classifier.py --model_type roberta --task_name codesearch --do_train --do_eval --eval_all_checkpoints --train_file train_short.txt --dev_file valid_short.txt --max_seq_length 50 --per_gpu_train_batch_size 8 --per_gpu_eval_batch_size 8 --learning_rate 1e-5 --num_train_epochs 1 --gradient_accumulation_steps 1 --overwrite_output_dir --data_dir CodeBERT-Implementation/data/codesearch/train_valid/$lang/ --output_dir ./models/$lang/ --model_name_or_path microsoft/codebert-base

Inference and Evaluation

lang = go
idx = 0
! python run_classifier.py --model_type roberta --model_name_or_path microsoft/codebert-base --task_name codesearch --do_predict --output_dir CodeBERT-Implementation/data/models/$lang --data_dir CodeBERT-Implementation/data/codesearch/test/$lang/ --max_seq_length 50 --per_gpu_train_batch_size 8 --per_gpu_eval_batch_size 8 --learning_rate 1e-5 --num_train_epochs 1 --test_file batch_short_${idx}.txt --pred_model_dir ./models/ruby/checkpoint-best/ --test_result_dir ./results/$lang/${idx}_batch_result.txt
! python mrr.py

The Mean Evaluation Rank (MER), the evaluation mteric, for the subset of data is given as follows:

Language MER
Ruby 0.0037
Go 0.0034
PHP 0.0044
Python 0.0052
Java 0.0033
Java script 0.0054

The accuracy is way less than what is reported in the paper. However, the purpose of this repo is to provide the user, ready to implement data of CodeBERT without any heavy downloads. We have also included the prediction results in this repo corresponding to the test data.

Owner
Tanuj Sur
Student at Chennai Mathematical Institute | Research Intern at TCS Research and Innovation Labs
Tanuj Sur
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
Python3 to Crystal Translation using Python AST Walker

py2cr.py A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.

66 Jul 25, 2022
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Grover is a model for Neural Fake News -- both generation and detectio

Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.

Rowan Zellers 856 Dec 24, 2022
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi

Nikolas Petrou 1 Jan 12, 2022
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
AI_Assistant - This is a Python based Voice Assistant.

This is a Python based Voice Assistant. This was programmed to increase my understanding of python and also how the in-general Voice Assistants work.

1 Jan 06, 2022
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transform

Bytedance Inc. 2.5k Jan 03, 2023
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Jan 07, 2023
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 01, 2023
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
SentAugment is a data augmentation technique for semi-supervised learning in NLP.

SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur

Meta Research 363 Dec 30, 2022
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022