PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

Overview

FastSpeech 2 - PyTorch Implementation

This is a PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech. This project is based on xcmyz's implementation of FastSpeech. Feel free to use/modify the code.

There are several versions of FastSpeech 2. This implementation is more similar to version 1, which uses F0 values as the pitch features. On the other hand, pitch spectrograms extracted by continuous wavelet transform are used as the pitch features in the later versions.

Updates

  • 2021/7/8: Release the checkpoint and audio samples of a multi-speaker English TTS model trained on LibriTTS
  • 2021/2/26: Support English and Mandarin TTS
  • 2021/2/26: Support multi-speaker TTS (AISHELL-3 and LibriTTS)
  • 2021/2/26: Support MelGAN and HiFi-GAN vocoder

Audio Samples

Audio samples generated by this implementation can be found here.

Quickstart

Dependencies

You can install the Python dependencies with

pip3 install -r requirements.txt

Inference

You have to download the pretrained models and put them in output/ckpt/LJSpeech/, output/ckpt/AISHELL3, or output/ckpt/LibriTTS/.

For English single-speaker TTS, run

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --restore_step 900000 --mode single -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml -t config/LJSpeech/train.yaml

For Mandarin multi-speaker TTS, try

python3 synthesize.py --text "大家好" --speaker_id SPEAKER_ID --restore_step 600000 --mode single -p config/AISHELL3/preprocess.yaml -m config/AISHELL3/model.yaml -t config/AISHELL3/train.yaml

For English multi-speaker TTS, run

python3 synthesize.py --text "YOUR_DESIRED_TEXT"  --speaker_id SPEAKER_ID --restore_step 800000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

The generated utterances will be put in output/result/.

Here is an example of synthesized mel-spectrogram of the sentence "Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition", with the English single-speaker TTS model.

Batch Inference

Batch inference is also supported, try

python3 synthesize.py --source preprocessed_data/LJSpeech/val.txt --restore_step 900000 --mode batch -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml -t config/LJSpeech/train.yaml

to synthesize all utterances in preprocessed_data/LJSpeech/val.txt

Controllability

The pitch/volume/speaking rate of the synthesized utterances can be controlled by specifying the desired pitch/energy/duration ratios. For example, one can increase the speaking rate by 20 % and decrease the volume by 20 % by

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --restore_step 900000 --mode single -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml -t config/LJSpeech/train.yaml --duration_control 0.8 --energy_control 0.8

Training

Datasets

The supported datasets are

  • LJSpeech: a single-speaker English dataset consists of 13100 short audio clips of a female speaker reading passages from 7 non-fiction books, approximately 24 hours in total.
  • AISHELL-3: a Mandarin TTS dataset with 218 male and female speakers, roughly 85 hours in total.
  • LibriTTS: a multi-speaker English dataset containing 585 hours of speech by 2456 speakers.

We take LJSpeech as an example hereafter.

Preprocessing

First, run

python3 prepare_align.py config/LJSpeech/preprocess.yaml

for some preparations.

As described in the paper, Montreal Forced Aligner (MFA) is used to obtain the alignments between the utterances and the phoneme sequences. Alignments of the supported datasets are provided here. You have to unzip the files in preprocessed_data/LJSpeech/TextGrid/.

After that, run the preprocessing script by

python3 preprocess.py config/LJSpeech/preprocess.yaml

Alternately, you can align the corpus by yourself. Download the official MFA package and run

./montreal-forced-aligner/bin/mfa_align raw_data/LJSpeech/ lexicon/librispeech-lexicon.txt english preprocessed_data/LJSpeech

or

./montreal-forced-aligner/bin/mfa_train_and_align raw_data/LJSpeech/ lexicon/librispeech-lexicon.txt preprocessed_data/LJSpeech

to align the corpus and then run the preprocessing script.

python3 preprocess.py config/LJSpeech/preprocess.yaml

Training

Train your model with

python3 train.py -p config/LJSpeech/preprocess.yaml -m config/LJSpeech/model.yaml -t config/LJSpeech/train.yaml

The model takes less than 10k steps (less than 1 hour on my GTX1080Ti GPU) of training to generate audio samples with acceptable quality, which is much more efficient than the autoregressive models such as Tacotron2.

TensorBoard

Use

tensorboard --logdir output/log/LJSpeech

to serve TensorBoard on your localhost. The loss curves, synthesized mel-spectrograms, and audios are shown.

Implementation Issues

  • Following xcmyz's implementation, I use an additional Tacotron-2-styled Post-Net after the decoder, which is not used in the original FastSpeech 2.
  • Gradient clipping is used in the training.
  • In my experience, using phoneme-level pitch and energy prediction instead of frame-level prediction results in much better prosody, and normalizing the pitch and energy features also helps. Please refer to config/README.md for more details.

Please inform me if you find any mistakes in this repo, or any useful tips to train the FastSpeech 2 model.

References

Citation

@INPROCEEDINGS{chien2021investigating,
  author={Chien, Chung-Ming and Lin, Jheng-Hao and Huang, Chien-yu and Hsu, Po-chun and Lee, Hung-yi},
  booktitle={ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={Investigating on Incorporating Pretrained and Learnable Speaker Representations for Multi-Speaker Multi-Style Text-to-Speech}, 
  year={2021},
  volume={},
  number={},
  pages={8588-8592},
  doi={10.1109/ICASSP39728.2021.9413880}}
Owner
Chung-Ming Chien
Graduate Student, NTU CSIE | Speech Processing Lab. | Speech synthesis & Natural language processing
Chung-Ming Chien
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
News-Articles-and-Essays - NLP (Topic Modeling and Clustering)

NLP T5 Project proposal Topic Modeling and Clustering of News-Articles-and-Essays Students: Nasser Alshehri Abdullah Bushnag Abdulrhman Alqurashi OVER

2 Jan 18, 2022
Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention April 6, 2021 We extended segment-means to compute landmarks without requiri

Zhanpeng Zeng 322 Jan 01, 2023
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised

Google Research 1.4k Dec 22, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers

beyond masking Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers The code is coming Figure 1: Pipeline of token-based pre-

Yunjie Tian 23 Sep 27, 2022
Ecommerce product title recognition package

revizor This package solves task of splitting product title string into components, like type, brand, model and article (or SKU or product code or you

Bureaucratic Labs 16 Mar 03, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Pulkit Kathuria 173 Jan 04, 2023
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields

Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The

60 Dec 12, 2022
The simple project to separate mixed voice (2 clean voices) to 2 separate voices.

Speech Separation The simple project to separate mixed voice (2 clean voices) to 2 separate voices. Result Example (Clisk to hear the voices): mix ||

vuthede 31 Oct 30, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 04, 2023
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022