PyWorld3 is a Python implementation of the World3 model

Overview

Logo

The World3 model revisited in Python

License: CeCILL 2.1


PyWorld3 is a Python implementation of the World3 model, as described in the book Dynamics of Growth in a Finite World. This version slightly differs from the previous one used in the world-known reference the Limits to Growth, because of different numerical parameters and a slightly different model structure.

The World3 model is based on an Ordinary Differential Equation solved by a Backward Euler method. Although it is described with 12 state variables, taking internal delay functions into account raises the problem to the 29th order. For the sake of clarity and model calibration purposes, the model is structured into 5 main sectors: Population, Capital, Agriculture, Persistent Pollution and Nonrenewable Resource.

Install and Hello World3

Install pyworld3 either via:

pip install pyworld3

or by cloning the repository, installing the requirements numpy, scipy and matplotlib and do:

python setup.py install

Run the provided example to simulate the standard run, known as the Business as usual scenario:

import pyworld3
pyworld3.hello_world3()

As shown below, the simulation output compares well with the original print. For a tangible understanding by the general audience, the usual chart plots the trajectories of the:

  • population (POP) from the Population sector,
  • nonrenewable resource fraction remaining (NRFR) from the Nonrenewable Resource sector,
  • food per capita (FPC) from the Agriculture sector,
  • industrial output per capita (IOPC) from the Capital sector,
  • index of persistent pollution (PPOLX) from the Persistent Pollution sector.

How to tune your own simulation

One simulation requires a script with the following steps:

from pyworld3 import World3

world3 = World3()                    # choose the time limits and step.
world3.init_world3_constants()       # choose the model constants.
world3.init_world3_variables()       # initialize all variables.
world3.set_world3_table_functions()  # get tables from a json file.
world3.set_world3_delay_functions()  # initialize delay functions.
world3.run_world3()

You should be able to tune your own simulations quite quickly as long as you want to modify:

  • time-related parameters during the instantiation,
  • constants with the init_world3_constants method,
  • nonlinear functions by editing your modified tables ./your_modified_tables.json based on the initial json file pyworld3/functions_table_world3.json and calling world3.set_world3_table_functions("./your_modified_tables.json").

Licence

The project is under the CeCILL 2.1 licence, a GPL-like licence compatible with international and French laws. See the terms for more details.

How to cite PyWorld3 with Bibtex

To cite the project in your paper via BibTex:

@softwareversion{vanwynsberghe:hal-03414394v1,
  TITLE = {{PyWorld3 - The World3 model revisited in Python}},
  AUTHOR = {Vanwynsberghe, Charles},
  URL = {https://hal.archives-ouvertes.fr/hal-03414394},
  YEAR = {2021},
  MONTH = Nov,
  SWHID = {swh:1:dir:9d4ad7aec99385fa4d5057dece7a989d8892d866;origin=https://hal.archives-ouvertes.fr/hal-03414394;visit=swh:1:snp:be7d9ffa2c1be6920d774d1f193e49ada725ea5e;anchor=swh:1:rev:da5e3732d9d832734232d88ea33af99ab8987d52;path=/},
  LICENSE = {CeCILL Free Software License Agreement v2.1},
  HAL_ID = {hal-03414394},
}

References and acknowledgment

  • Meadows, Dennis L., William W. Behrens, Donella H. Meadows, Roger F. Naill, Jørgen Randers, and Erich Zahn. Dynamics of Growth in a Finite World. Cambridge, MA: Wright-Allen Press, 1974.
  • Meadows, Donella H., Dennis L. Meadows, Jorgen Randers, and William W. Behrens. The Limits to Growth. New York 102, no. 1972 (1972): 27.
  • Markowich, P. Sensitivity Analysis of Tech 1-A Systems Dynamics Model for Technological Shift, (1979).
Comments
  • No output files using

    No output files using "example_world3_standard.py"

    Hello,

    I try your script. I can't find the "fig_world3_standard_x.pdf" files anywhere after using "example_world3_standard.py".

    I'm not confortable with Python, so may be I don't use the script properly.

    Regards.

    bug good first issue 
    opened by 012abcd 9
  • Missing requirement for cbr in Population

    Missing requirement for cbr in Population

        @requires(["cbr"], ["pop"])
        def _update_cbr(self, k, jk):
            """
            From step k requires: POP
            """
            self.cbr[k] = 1000 * self.b[jk] / self.pop[k]
    

    I believe the function _update_cbr in the Population class is missing the requirement for the birth rate

    opened by iancostalves 1
  • 29th order

    29th order

    Hi, I believe the 29th order in the README is a bit misleading.. The word order is used for the order of the differential equation, not the number of state variables. I believe the highest DE order of world3 is three.

    https://pure.tue.nl/ws/files/3428351/79372.pdf

    opened by burakbayramli 0
  • Improved usability with Bokeh

    Improved usability with Bokeh

    I'm not sure this is an upstream consideration or a sub-project so I wanted to raise it here.

    This model should lend itself quite well to a bokeh model (https://bokeh.org) allowing live adjustment of the input variables and the enabling and disabling of particular plots and other functionality. I may attempt to wrap something up if I get some time as I don't expect it to be too difficult.

    opened by klattimer 4
  • Additional time series data

    Additional time series data

    Immediately it becomes obvious that global temperature and sea levels should be plotted, but also population density, and energy consumption. This would suggest the possibility of tools to prepare and overlay any time-series data set.

    opened by klattimer 0
  • Adding a plot of the historic population

    Adding a plot of the historic population

    Hello, Thank you for making this python version of world3. I think it would be useful to add a option in order to plot the historic population next to the predicted population. Would you mind if I add an option to do so and prepare a pull request ? Best, A. below a draft (historic population in purple) draft :

    opened by alan-man 4
Releases(v1.1)
Owner
Charles Vanwynsberghe
Associate professor
Charles Vanwynsberghe
Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

snoop2head 14 Nov 15, 2022
NLP-Project - Used an API to scrape 2000 reddit posts, then used NLP analysis and created a classification model to mixed succcess

Project 3: Web APIs & NLP Problem Statement How do r/Libertarian and r/Neoliberal differ on Biden post-inaguration? The goal of the project is to see

Adam Muhammad Klesc 2 Mar 29, 2022
An extension for asreview implements a version of the tf-idf feature extractor that saves the matrix and the vocabulary.

Extension - matrix and vocabulary extractor for TF-IDF and Doc2Vec An extension for ASReview that adds a tf-idf extractor that saves the matrix and th

ASReview 4 Jun 17, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Chinese Pre-Trained Language Models (CPM-LM) Version-I

CPM-Generate 为了促进中文自然语言处理研究的发展,本项目提供了 CPM-LM (2.6B) 模型的文本生成代码,可用于文本生成的本地测试,并以此为基础进一步研究零次学习/少次学习等场景。[项目首页] [模型下载] [技术报告] 若您想使用CPM-1进行推理,我们建议使用高效推理工具BMI

Tsinghua AI 1.4k Jan 03, 2023
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
Simple NLP based project without any use of AI

Simple NLP based project without any use of AI

Shripad Rao 1 Apr 26, 2022
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
The PyTorch based implementation of continuous integrate-and-fire (CIF) module.

CIF-PyTorch This is a PyTorch based implementation of continuous integrate-and-fire (CIF) module for end-to-end (E2E) automatic speech recognition (AS

Minglun Han 24 Dec 29, 2022
Transformers and related deep network architectures are summarized and implemented here.

Transformers: from NLP to CV This is a practical introduction to Transformers from Natural Language Processing (NLP) to Computer Vision (CV) Introduct

Ibrahim Sobh 138 Dec 27, 2022
TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

Alexa 98 Dec 09, 2022
Transcribing audio files using Hugging Face's implementation of Wav2Vec2 + "chain-linking" NLP tasks to combine speech-to-text with downstream tasks like translation and summarisation.

PART 2: CHAIN LINKING AUDIO-TO-TEXT NLP TASKS 2A: TRANSCRIBE-TRANSLATE-SENTIMENT-ANALYSIS In notebook3.0, I demo a simple workflow to: transcribe a lo

Chua Chin Hon 30 Jul 13, 2022
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023