KoSimCSE
- Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch
Installation
git clone https://github.com/BM-K/KoSimCSE.git
cd KoSimCSE
git clone https://github.com/SKTBrain/KoBERT.git
cd KoBERT
pip install -r requirements.txt
pip install .
cd ..
pip install -r requirements.txt
Training - only supervised
-
Model
-
Dataset
- kakaobrain NLU dataset
- train: KorNLI
- dev & test: KorSTS
- kakaobrain NLU dataset
-
Setting
- epochs: 3
- dropout: 0.1
- batch size: 256
- temperature: 0.05
- learning rate: 5e-5
- warm-up ratio: 0.05
- max sequence length: 50
- evaluation steps during training: 250
-
Run train -> test -> semantic_search
bash run_example.sh
Pre-Trained Models
- Using BERT [CLS] token representation
- Pre-Trained model check point
- Google Drive Sharing
- ./output/nli_checkpoint.pt
Performance
Model | Cosine Pearson | Cosine Spearman | Euclidean Pearson | Euclidean Spearman | Manhattan Pearson | Manhattan Spearman | Dot Pearson | Dot Spearman |
---|---|---|---|---|---|---|---|---|
KoSBERT_SKT* | 78.81 | 78.47 | 77.68 | 77.78 | 77.71 | 77.83 | 75.75 | 75.22 |
KoSimCSE_SKT | 81.55 | 82.11 | 81.70 | 81.69 | 81.65 | 81.60 | 78.19 | 77.18 |
- *: KoSBERT_SKT
Example Downstream Task
Semantic Search
python SemanticSearch.py
import numpy as np
from model.utils import pytorch_cos_sim
from data.dataloader import convert_to_tensor, example_model_setting
def main():
model_ckpt = './output/nli_checkpoint.pt'
model, transform, device = example_model_setting(model_ckpt)
# Corpus with example sentences
corpus = ['한 남자가 음식을 먹는다.',
'한 남자가 빵 한 조각을 먹는다.',
'그 여자가 아이를 돌본다.',
'한 남자가 말을 탄다.',
'한 여자가 바이올린을 연주한다.',
'두 남자가 수레를 숲 속으로 밀었다.',
'한 남자가 담으로 싸인 땅에서 백마를 타고 있다.',
'원숭이 한 마리가 드럼을 연주한다.',
'치타 한 마리가 먹이 뒤에서 달리고 있다.']
inputs_corpus = convert_to_tensor(corpus, transform)
corpus_embeddings = model.encode(inputs_corpus, device)
# Query sentences:
queries = ['한 남자가 파스타를 먹는다.',
'고릴라 의상을 입은 누군가가 드럼을 연주하고 있다.',
'치타가 들판을 가로 질러 먹이를 쫓는다.']
# Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity
top_k = 5
for query in queries:
query_embedding = model.encode(convert_to_tensor([query], transform), device)
cos_scores = pytorch_cos_sim(query_embedding, corpus_embeddings)[0]
cos_scores = cos_scores.cpu().detach().numpy()
top_results = np.argpartition(-cos_scores, range(top_k))[0:top_k]
print("\n\n======================\n\n")
print("Query:", query)
print("\nTop 5 most similar sentences in corpus:")
for idx in top_results[0:top_k]:
print(corpus[idx].strip(), "(Score: %.4f)" % (cos_scores[idx]))
Result
Query: 한 남자가 파스타를 먹는다.
Top 5 most similar sentences in corpus:
한 남자가 음식을 먹는다. (Score: 0.6002)
한 남자가 빵 한 조각을 먹는다. (Score: 0.5938)
치타 한 마리가 먹이 뒤에서 달리고 있다. (Score: 0.0696)
한 남자가 말을 탄다. (Score: 0.0328)
원숭이 한 마리가 드럼을 연주한다. (Score: -0.0048)
======================
Query: 고릴라 의상을 입은 누군가가 드럼을 연주하고 있다.
Top 5 most similar sentences in corpus:
원숭이 한 마리가 드럼을 연주한다. (Score: 0.6489)
한 여자가 바이올린을 연주한다. (Score: 0.3670)
한 남자가 말을 탄다. (Score: 0.2322)
그 여자가 아이를 돌본다. (Score: 0.1980)
한 남자가 담으로 싸인 땅에서 백마를 타고 있다. (Score: 0.1628)
======================
Query: 치타가 들판을 가로 질러 먹이를 쫓는다.
Top 5 most similar sentences in corpus:
치타 한 마리가 먹이 뒤에서 달리고 있다. (Score: 0.7756)
두 남자가 수레를 숲 속으로 밀었다. (Score: 0.1814)
한 남자가 말을 탄다. (Score: 0.1666)
원숭이 한 마리가 드럼을 연주한다. (Score: 0.1530)
한 남자가 담으로 싸인 땅에서 백마를 타고 있다. (Score: 0.1270)
Citing
SimCSE
@article{gao2021simcse,
title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
journal={arXiv preprint arXiv:2104.08821},
year={2021}
}
KorNLU Datasets
@article{ham2020kornli,
title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon},
journal={arXiv preprint arXiv:2004.03289},
year={2020}
}