Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

Overview

PythonTextObfuscator

Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Example

Requirements:

python3

For the Selenium Obfuscator:

    -Selenium
    
    -Firefox
    
    -Geckodriver

In the Selenium Obfuscator:

-The major benefit is that you can translate excel documents, the downside is that after 10 or so document translations, Google blocks your ip for a while.

-Translation is generally slower and more limited using selenium as a browser tab is being used to scrape the data. Also beware of RAM usage.

-May no longer be supported in the future due to its drawbacks.

In the Urllib Obfuscator:

-Translation is generally faster and uses very little resources as only html is downloaded through a request. Multiprocessing also allows simultanious requests and can be used to the full extent without worrying about RAM usage.

—Split by length is faster and uses less requests (better for longer texts)

—Split by newline is slower and uses more requests but adds much more translation variety.

-Reminder: Since google has a url request limit, you'll need to switch VPN locations when the request limit is hit.

    ——Don't worry too much though, as it takes quite a bit of requests to get to that point, and the block only lasts for around an hour.
You might also like...
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

Auto translate textbox from Japanese to English or Indonesia
Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

translate using your voice
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

Translate U is capable of translating the text present in an image from one language to the other.
Translate U is capable of translating the text present in an image from one language to the other.

Translate U is capable of translating the text present in an image from one language to the other. The app uses OCR and Google translate to identify and translate across 80+ languages.

Graphical user interface for Argos Translate
Graphical user interface for Argos Translate

Argos Translate GUI Website | GitHub | PyPI Graphical user interface for Argos Translate. Install pip3 install argostranslategui

Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Comments
  • Attempt to decode JSON with unexpected mimetype: text/plain

    Attempt to decode JSON with unexpected mimetype: text/plain

    I'm not sure what's causing this, as the last time I tried this release, this issue was not present. If it's accessing content server-side, then it might be that the server has had a config change resulting in it returning a different mimetype?

    I get the error message below consistently in the console, with %2E being added to the end of the URL each time. It does seem like some translation does happen; in this case, I inputted "Test", and the URL ended with "Hlola".

    https://translate.alefvanoon.xyz/api/v1/zu/mi/Hlola%2E 0, message='Attempt to decode JSON with unexpected mimetype: text/plain; charset=utf-8', url=URL('https://translate.alefvanoon.xyz/api/v1/zu/mi/Hlola')

    From what I've gathered looking online, the issue lies in either line 13, line 469, or both.

    return (await response.json())['translation'].replace('/','⁄')

    text = (await response.json())['translation'].replace('/','⁄')

    Some of the solutions online referred to adding "content_type=None" or "content_type='text/plain'" into the brackets after "json", but this only seemed to cause further issues for me.

    opened by UltraHylia 2
  • Program Freezes Up and Looping Error

    Program Freezes Up and Looping Error

    When you have Chinese (Simplified) and/or Chinese (Traditional) enabled in the language selector, the program can freeze and an error loops in the console. It happens no matter what other languages are enabled.

    https://user-images.githubusercontent.com/60769253/197659506-38871035-e311-4710-9eb9-ac2d7387841f.mp4

    opened by DerpTaco99921 0
Releases(v0.4)
  • v0.4(Feb 2, 2022)

    Rebuilt from the ground up with a new GUI and translation method.

    Changes:

    -Improved GUI.

    -Translations are retrieved from a front-end to Google Translate called Lingva, which removes the issue with being blocked for doing too many requests.

    -Translations are done in an asynchronous function using aiohttp instead of a process pool, which is optimal for large bulk translations.

    -Removed selenium obfuscation.

    Additions: -Importing and saving text files. -Language Selector to activate or deactivate any individual language. -Language setting for the result. -Three different split methods: ____-Initial ________-Text is split by length before being passed into the obfuscate function. ________-Faster as less requests are made. ________-Different languages for each piece. ________-Tabs not preserved. ____-Continuous ________-Text is split by length inside the obfuscate function. ________-Faster as less requests are made. ________-Same languages for each piece. ________-Tabs not preserved. ____-Newline ________-Text is split by newlines and tabs. ________-Slower as more requests are made. ________-Every single line is translated with different languages. ________-Tabs preserved. -Translation Generator which creates a .csv file containing multiple translations of the same text: ____-Repeat mode obfuscates the original text each time, adding the result in each new column. ____-Continue mode obfuscates the results from each subsequent obfuscation, adding the result in each new column.

    Source code(tar.gz)
    Source code(zip)
    Python.Text.Obfuscator.v0.4.zip(15.75 KB)
  • v0.3.1c-r2(Dec 23, 2021)

  • v0.3.1c(Dec 23, 2021)

    Newlines no longer get messed up in Urllib Obfuscator. Added a choice to split by length or by newlines. —Split by length is faster and uses less requests (better for longer texts) —Split by newline is slower and uses more requests but adds much more translation variety. Reminder: Since google has a URL request limit, you'll need to switch VPN locations when the request limit is hit.

    Source code(tar.gz)
    Source code(zip)
    Python.Text.Obfuscator.v0.3.1c.zip(51.63 KB)
  • v0.3.1b(Dec 23, 2021)

  • v0.3.1a(Dec 23, 2021)

  • v0.3(Dec 23, 2021)

    I made massive improvements to the speed of the obfuscation thanks to learning about urllib.

    For example, I did translated the same ~2300 character long string of text 10 times in the old and new version; the old one took 38.8 seconds while the new one took only 6.8 seconds.

    In addition, the capacity to add a larger amount of characters is far increased as it doesn't require Firefox tabs to be open and eating up ram.

    As a test I translated the entire Among Us Wikipedia page 50 times (with a character count of over 60 thousand!), and it only took only 114 seconds to finish translating. Using the old obfuscator I wouldn't be able to translate more than half that amount, and it would take ages to complete (Like 10 mins or more).

    Unfortunately for this version the Excel Obfuscator is removed until I can figure out how to get it to work in urllib, if I can't then I'll probably add it back it with Selenium.

    At least if you couldn't get selenium to work on your computer for the previous versions you don't have to worry about getting it for this.

    Source code(tar.gz)
    Source code(zip)
    Python.Text.Obfuscator.v0.3.zip(5.73 KB)
  • v0.2.2(Dec 23, 2021)

  • v0.2.1b(Dec 23, 2021)

  • v0.2.1a(Dec 23, 2021)

    Fixed TimeoutExceptions for the string translations (textbox input) obfuscation. You can now do as many translations as you want without worrying about encountering an error. Same for amount of characters (as long as your PC can handle of course). As for excel translations they remain unchanged — since I can't do anything about Google's Document translation limit — so just switch locations on VPN like usual after 10 translations for the Excel Obfuscator.

    Source code(tar.gz)
    Source code(zip)
    Python.Text.Obfuscator.v0.2.1.zip(5.88 KB)
  • v0.2(Dec 23, 2021)

  • v0.1b(Dec 23, 2021)

  • v0.1a(Dec 23, 2021)

Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...

Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want

deepset 6.4k Jan 09, 2023
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

凌逆战 75 Dec 05, 2022
Random-Word-Generator - Generates meaningful words from dictionary with given no. of letters and words.

Random Word Generator Generates meaningful words from dictionary with given no. of letters and words. This might be useful for generating short links

Mohammed Rabil 1 Jan 01, 2022
jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese.

jel: Japanese Entity Linker jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese. Usage Currently, link and question methods

izuna385 10 Jan 06, 2023
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022
Code for lyric-section-to-comment generation based on huggingface transformers.

CommentGeneration Code for lyric-section-to-comment generation based on huggingface transformers. Migrate Guyu model and code (both 12-layers and 24-l

Yawei Sun 8 Sep 04, 2021
Sapiens is a human antibody language model based on BERT.

Sapiens: Human antibody language model ____ _ / ___| __ _ _ __ (_) ___ _ __ ___ \___ \ / _` | '_ \| |/ _ \ '

Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc. 13 Nov 20, 2022
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
Stuff related to Ben Eater's 8bit breadboard computer

8bit breadboard computer simulator This is an assembler + simulator/emulator of Ben Eater's 8bit breadboard computer. For a version with its RAM upgra

Marijn van Vliet 29 Dec 29, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 342 Jan 05, 2023
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques

Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener

Prakhar Mishra 28 May 25, 2021