Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Overview

Training COMET using seq2seq setting

Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarization.py in the official example codes for transformers version 4.16.0.dev0.

The ./deepspeed/ folder is copied from https://github.com/huggingface/transformers/tree/master/tests/deepspeed .

The training data of ATOMIC2020 can be downloaded at https://allenai.org/data/atomic-2020. You need to convert the .tsv file to .csv to be compatible with the dataloader in transformers.

Dependencies

python

torch==1.7.1
cudatoolkit=11.0
transformers==4.15.0
deepspeed==0.5.10

others

GCC/G++ 5.2.0 (to complie deepspeed ops)

Usage

1. Normal training without memory optimization:

CUDA_VISIBLE_DEVICES=0 python models/comet_seq2seq.py \
    --model_name_or_path t5-small \
    --do_train \
    --train_file /path/to/train.csv \
    --source_prefix "" \
    --output_dir data/models/t5-small \
    --overwrite_output_dir \
    --gradient_accumulation_steps=4 \
    --per_device_train_batch_size=8 \
    --per_device_eval_batch_size=4 \
    --max_source_length 16 \
    --max_target_length 18 \
    --text_column head_event --summary_column tail_event \
    --save_strategy epoch \
    --num_train_epochs 3 \
    --learning_rate 1e-5 

2. Train with gradient_checkpointing=True. Smaller memory usage, meanwhile lower training speed.

CUDA_VISIBLE_DEVICES=0 python models/comet_seq2seq.py \
    --model_name_or_path t5-small \
    --do_train \
    --train_file /path/to/train.csv \
    --source_prefix "" \
    --output_dir data/models/t5-small \
    --overwrite_output_dir \
    --gradient_accumulation_steps=4 \
    --per_device_train_batch_size=8 \
    --per_device_eval_batch_size=4 \
    --max_source_length 16 \
    --max_target_length 18 \
    --text_column head_event --summary_column tail_event \
    --save_strategy epoch \
    --num_train_epochs 3 \
    --learning_rate 1e-5 \
    --gradient_checkpointing

3. Train with DeepSpeed (Either zero-stage2 or zero-stage3)

# google/t5-3B training, on 2080Ti (11GB)
deepspeed --include localhost:0,1 --master_port 30000 models/comet_seq2seq.py \
    --deepspeed deepspeed/ds_config_zero2.json \
    --model_name_or_path google/t5-xl-lm-adapt \
    --do_train \
    --train_file data/kg/atomic2020_data-feb2021/train.csv \
    --source_prefix "" \
    --output_dir data/models/comet/t5_xl_s2_bs32_fp16 \
    --overwrite_output_dir \
    --gradient_accumulation_steps=1 \
    --per_device_train_batch_size=16 \
    --max_source_length 16 \
    --max_target_length 18 \
    --text_column head_event --summary_column tail_event \
    --save_strategy epoch \
    --num_train_epochs 3 \
    --learning_rate 1e-5 \
    --fp16

4. Comparison of memory usage of different memory optimization methods

Compare the memory usage on NVIDIA RTX A6000 (48685MB memory) and Nvidia GeForce 3090 (24268MB memory).

1. fp16

T5-3B: effects of fp16. A 20% reduce of memory size.

Device fp16 Batch Size x Grad-Accum x Num-GPU Memory Usage Time to Train a Batch
vanilla A6000 False 8x4x1 47.5k M 1.5s/32ex
vanilla A6000 True 8x4x1 31k M 1.0s/32ex
vanilla 3090 False 1x32x1 -
vanilla 3090 True 1x32x1 -

2. gradient_checkpointing

T5-3B: Effects of gradient_checkpointing.

Device fp16 Batch Size x Grad-Accum x Num-GPU Memory Usage Time to Train a Batch
vanilla A6000 False 8x4x1 47k M 1.5s/32ex
vanilla A6000 True 8x4x1 31k M 1.0s/32ex
grad-ckpt A6000 False 8x4x1 46.4k M 1.3s/32ex
grad-ckpt A6000 True 8x4x1 23.9k M 1.1/32ex
vanilla 3090 True 1x32x1 -
grad-ckpt 3090 True 1x32x1 23.8k M 15s/32ex

3. Deepspeed stage 2

T5-3B: Effects of deepspeed.

Device fp16 Batch Size x Grad-Accum x Num-GPU Memory Usage Time to Train a Batch
vanilla 3090 True 1x32x1 -
grad-ckpt 3090 True 1x32x1 23k M 13.5s/32ex
stage2 3090 True 32x1x1 20.3k M 7.5s/32ex
stage2 3090 True 16x1x2 20.3k M 6.36s/32ex
stage2 3090 True 32x1x2 20.3k M 3.75s/32ex

4. Deepspeed stage 3

stage3 will lead to smaller usage of memory but way smaller training speed.

5. Automatic Evaluation Result on ATOMIC2020 data

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
T5-3B (no deepspeed), lr1e-5, epoch 3 0.346 0.184 0.12 0.084 0.19 0.422 0.646
T5-3B (no deepspeed), lr1e-5, epoch 2 0.348 0.185 0.121 0.085 0.19 0.424 0.651
T5-3B (no deepspeed), lr1e-5, epoch 1 0.343 0.177 0.113 0.079 0.186 0.416 0.629
T5-3B (ds_stage2, fp16) epoch 3 0.340 0.182 0.118 0.083 0.189 0.418 0.637
T5-3B (ds_stage2, fp16) epoch 2 0.337 0.177 0.114 0.078 0.189 0.419 0.633
T5-3B (ds_stage2, fp16) epoch 1 0.335 0.174 0.112 0.076 0.186 0.415 0.632

Useful discussions regarding environment setups

TODO

DeepSpeed without Trainer(): https://huggingface.co/docs/transformers/main_classes/deepspeed#deepspeed-non-trainer-integration

Owner
tqfang
Ph.D. at HKUST, interested in commonsense in NLP
tqfang
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
An extensive UI tool built using new data scraped from BBC News

BBC-News-Analyzer An extensive UI tool built using new data scraped from BBC New

Antoreep Jana 1 Dec 31, 2021
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
Maha is a text processing library specially developed to deal with Arabic text.

An Arabic text processing library intended for use in NLP applications Maha is a text processing library specially developed to deal with Arabic text.

Mohammad Al-Fetyani 184 Nov 27, 2022
Beautiful visualizations of how language differs among document types.

Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t

Jason S. Kessler 2k Dec 27, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
Official PyTorch implementation of SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 29, 2022
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
使用pytorch+transformers复现了SimCSE论文中的有监督训练和无监督训练方法

SimCSE复现 项目描述 SimCSE是一种简单但是很巧妙的NLP对比学习方法,创新性地引入Dropout的方式,对样本添加噪声,从而达到对正样本增强的目的。 该框架的训练目的为:对于batch中的每个样本,拉近其与正样本之间的距离,拉远其与负样本之间的距离,使得模型能够在大规模无监督语料(也可以

58 Dec 20, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
Natural language computational chemistry command line interface.

nlcc Install pip install nlcc Must have Open-AI Codex key: export OPENAI_API_KEY=your key here then nlcc key bindings ctrl-w copy to clipboard (Note

Andrew White 37 Dec 14, 2022
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
Stuff related to Ben Eater's 8bit breadboard computer

8bit breadboard computer simulator This is an assembler + simulator/emulator of Ben Eater's 8bit breadboard computer. For a version with its RAM upgra

Marijn van Vliet 29 Dec 29, 2022
A full spaCy pipeline and models for scientific/biomedical documents.

This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds

AI2 1.3k Jan 03, 2023
Word2Wave: a framework for generating short audio samples from a text prompt using WaveGAN and COALA.

Word2Wave is a simple method for text-controlled GAN audio generation. You can either follow the setup instructions below and use the source code and CLI provided in this repo or you can have a play

Ilaria Manco 91 Dec 23, 2022
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
A Flask Sentiment Analysis API, with visual implementation

The Sentiment Analysis Api was created using python flask module,it allows users to parse a text or sentence throught the (?text) arguement, then view the sentiment analysis of that sentence. It can

Ifechukwudeni Oweh 10 Jul 17, 2022
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021