Edge-Augmented Graph Transformer

Overview

PWCPWCPWCPWCPWC

Edge-augmented Graph Transformer

Introduction

This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https://arxiv.org/abs/2108.03348, which augments the Transformer architecture with residual edge channels. The resultant architecture can directly process graph-structured data and acheives good results on supervised graph-learning tasks as presented by Dwivedi et al.. It also achieves good performance on the large-scale PCQM4M-LSC (0.1263 MAE on val) dataset. EGT beats convolutional/message-passing graph neural networks on a wide range of supervised tasks and thus demonstrates that convolutional aggregation is not an essential inductive bias for graphs.

Requirements

  • python >= 3.7
  • tensorflow >= 2.1.0
  • h5py >= 2.8.0
  • numpy >= 1.18.4
  • scikit-learn >= 0.22.1

Download the Datasets

For our experiments, we converted the datasets to HDF5 format for the convenience of using them without any specific library. Only the h5py library is required. The datasets can be downloaded from -

Or you can simply run the provided bash scripts download_medium_scale_datasets.sh, download_large_scale_datasets.sh. The default location of the datasets is the datasets directory.

Run Training and Evaluations

You must create a JSON config file containing the configuration of a model, its training and evaluation configs (configurations). The same config file is used to do both training and evaluations.

  • To run training: python run_training.py <config_file.json>
  • To end training (prematurely): python end_training.py <config_file.json>
  • To perform evaluations: python do_evaluations.py <config_file.json>

Config files for the main results presented in the paper are contained in the configs/main directory, whereas configurations for the ablation study are contained in the configs/ablation directory. The paths and names of the files are self-explanatory.

More About Training and Evaluations

Once the training is started a model folder will be created in the models directory, under the specified dataset name. This folder will contain a copy of the input config file, for the convenience of resuming training/evaluation. Also, it will contain a config.json which will contain all configs, including unspecified default values, used for the training. Training will be checkpointed per epoch. In case of any interruption you can resume training by running the run_training.py with the config.json file again.

In case you wish to finalize training midway, just stop training and run end_training.py script with the config.json file to save the model weights.

After training, you can run the do_evaluations.py script with the same config file to perform evaluations. Alongside being printed to stdout, results will be saved in the predictions directory, under the model directory.

Config File

The config file can contain many different configurations, however, the only required configuration is scheme, which specifies the training scheme. If the other configurations are not specified, a default value will be assumed for them. Here are some of the commonly used configurations:

scheme: Used to specify the training scheme. It has a format <dataset_name>.<positional_encoding>. For example: cifar10.svd or zinc.eig. If no encoding is to be used it can be something like pcqm4m.mat. For a full list you can explore the lib/training/schemes directory.

dataset_path: If the datasets are contained in the default location in the datasets directory, this config need not be specified. Otherwise you have to point it towards the <dataset_name>.h5 file.

model_name: Serves as an identifier for the model, also specifies default path of the model directory, weight files etc.

save_path: The training process will create a model directory containing the logs, checkpoints, configs, model summary and predictions/evaluations. By default it creates a folder at models/<dataset_name>/<model_name> but it can be changed via this config.

cache_dir: During first time of training/evaluation the data will be cached to a tensorflow cache format. Default path is data_cache/<dataset_name>/<positional_encoding>. But it can be changed via this config.

distributed: In a multi-gpu setting you can set it to True, for distributed training.

batch_size: Batch size.

num_epochs: Maximum Number of epochs.

initial_lr: Initial learning rate. In case of warmup it is the maximum learning rate.

rlr_factor: Reduce LR on plateau factor. Setting it to a value >= 1.0 turns off Reduce LR.

rlr_patience: Reduce LR patience, i.e. the number of epochs after which LR is reduced if validation loss doesn't improve.

min_lr_factor: The factor by which the minimum LR is smaller, of the initial LR. Default is 0.01.

model_height: The number of layers L.

model_width: The dimensionality of the node channels d_h.

edge_width: The dimensionality of the edge channels d_e.

num_heads: The number of attention heads. Default is 8.

ffn_multiplier: FFN multiplier for both channels. Default is 2.0 .

virtual_nodes: number of virtual nodes. 0 (default) would result in global average pooling being used instead of virtual nodes.

upto_hop: Clipping value of the input distance matrix. A value of 1 (default) would result in adjacency matrix being used as input structural matrix.

mlp_layers: Dimensionality of the final MLP layers, specified as a list of factors with respect to d_h. Default is [0.5, 0.25].

gate_attention: Set this to False to get the ungated EGT variant (EGT-U).

dropout: Dropout rate for both channels. Default is 0.

edge_dropout: If specified, applies a different dropout rate to the edge channels.

edge_channel_type: Used to create ablated variants of EGT. A value of "residual" (default) implies pure/full EGT. "constrained" implies EGT-constrained. "bias" implies EGT-simple.

warmup_steps: If specified, performs a linear learning rate warmup for the specified number of gradient update steps.

total_steps: If specified, performs a cosine annealing after warmup, so that the model is trained for the specified number of steps.

[For SVD-based encodings]:

use_svd: Turning this off (False) would result in no positional encoding being used.

sel_svd_features: Rank of the SVD encodings r.

random_neg: Augment SVD encodings by random negation.

[For Eigenvectors encodings]:

use_eig: Turning this off (False) would result in no positional encoding being used.

sel_eig_features: Number of eigen vectors.

[For Distance prediction Objective (DO)]:

distance_target: Predict distance up to the specified hop, nu.

distance_loss: Factor by which to multiply the distance prediction loss, kappa.

Creation of the HDF5 Datasets from Scratch

We included two Jupyter notebooks to demonstrate how the HDF5 datasets are created

  • For the medium scale datasets view create_hdf_benchmarking_datasets.ipynb. You will need pytorch, ogb==1.1.1 and dgl==0.4.2 libraries to run the notebook. The notebook is also runnable on Google Colaboratory.
  • For the large scale pcqm4m dataset view create_hdf_pcqm4m.ipynb. You will need pytorch, ogb>=1.3.0 and rdkit>=2019.03.1 to run the notebook.

Python Environment

The Anaconda environment in which our experiments were conducted is specified in the environment.yml file.

Citation

Please cite the following paper if you find the code useful:

@article{hussain2021edge,
  title={Edge-augmented Graph Transformers: Global Self-attention is Enough for Graphs},
  author={Hussain, Md Shamim and Zaki, Mohammed J and Subramanian, Dharmashankar},
  journal={arXiv preprint arXiv:2108.03348},
  year={2021}
}
Owner
Md Shamim Hussain
Md Shamim Hussain is a Ph.D. student in Computer Science at Rensselaer Polytechnic Institute, NY. He got his B.Sc. and M.Sc. in EEE from BUET, Dhaka.
Md Shamim Hussain
Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Wojciech Muła 763 Dec 27, 2022
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
A simple Streamlit App to classify swahili news into different categories.

Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements

Davis David 4 May 01, 2022
This repository contains examples of Task-Informed Meta-Learning

Task-Informed Meta-Learning This repository contains examples of Task-Informed Meta-Learning (paper). We consider two tasks: Crop Type Classification

10 Dec 19, 2022
小布助手对话短文本语义匹配的一个baseline

oppo-text-match 小布助手对话短文本语义匹配的一个baseline 模型 参考:https://kexue.fm/archives/8213 base版本线下大概0.952,线上0.866(单模型,没做K-flod融合)。 训练 测试环境:tensorflow 1.15 + keras

苏剑林(Jianlin Su) 132 Dec 14, 2022
This is a modification of the OpenAI-CLIP repository of moein-shariatnia

This is a modification of the OpenAI-CLIP repository of moein-shariatnia

Sangwon Beak 2 Mar 04, 2022
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Microsoft 1.1k Dec 17, 2022
Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Hans Alemão 4 Jul 20, 2022
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

775 Dec 24, 2022
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing

FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP

FedML-AI 216 Nov 27, 2022
Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

MITRE Cybersecurity 64 Nov 22, 2022
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023