Edge-Augmented Graph Transformer

Overview

PWCPWCPWCPWCPWC

Edge-augmented Graph Transformer

Introduction

This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https://arxiv.org/abs/2108.03348, which augments the Transformer architecture with residual edge channels. The resultant architecture can directly process graph-structured data and acheives good results on supervised graph-learning tasks as presented by Dwivedi et al.. It also achieves good performance on the large-scale PCQM4M-LSC (0.1263 MAE on val) dataset. EGT beats convolutional/message-passing graph neural networks on a wide range of supervised tasks and thus demonstrates that convolutional aggregation is not an essential inductive bias for graphs.

Requirements

  • python >= 3.7
  • tensorflow >= 2.1.0
  • h5py >= 2.8.0
  • numpy >= 1.18.4
  • scikit-learn >= 0.22.1

Download the Datasets

For our experiments, we converted the datasets to HDF5 format for the convenience of using them without any specific library. Only the h5py library is required. The datasets can be downloaded from -

Or you can simply run the provided bash scripts download_medium_scale_datasets.sh, download_large_scale_datasets.sh. The default location of the datasets is the datasets directory.

Run Training and Evaluations

You must create a JSON config file containing the configuration of a model, its training and evaluation configs (configurations). The same config file is used to do both training and evaluations.

  • To run training: python run_training.py <config_file.json>
  • To end training (prematurely): python end_training.py <config_file.json>
  • To perform evaluations: python do_evaluations.py <config_file.json>

Config files for the main results presented in the paper are contained in the configs/main directory, whereas configurations for the ablation study are contained in the configs/ablation directory. The paths and names of the files are self-explanatory.

More About Training and Evaluations

Once the training is started a model folder will be created in the models directory, under the specified dataset name. This folder will contain a copy of the input config file, for the convenience of resuming training/evaluation. Also, it will contain a config.json which will contain all configs, including unspecified default values, used for the training. Training will be checkpointed per epoch. In case of any interruption you can resume training by running the run_training.py with the config.json file again.

In case you wish to finalize training midway, just stop training and run end_training.py script with the config.json file to save the model weights.

After training, you can run the do_evaluations.py script with the same config file to perform evaluations. Alongside being printed to stdout, results will be saved in the predictions directory, under the model directory.

Config File

The config file can contain many different configurations, however, the only required configuration is scheme, which specifies the training scheme. If the other configurations are not specified, a default value will be assumed for them. Here are some of the commonly used configurations:

scheme: Used to specify the training scheme. It has a format <dataset_name>.<positional_encoding>. For example: cifar10.svd or zinc.eig. If no encoding is to be used it can be something like pcqm4m.mat. For a full list you can explore the lib/training/schemes directory.

dataset_path: If the datasets are contained in the default location in the datasets directory, this config need not be specified. Otherwise you have to point it towards the <dataset_name>.h5 file.

model_name: Serves as an identifier for the model, also specifies default path of the model directory, weight files etc.

save_path: The training process will create a model directory containing the logs, checkpoints, configs, model summary and predictions/evaluations. By default it creates a folder at models/<dataset_name>/<model_name> but it can be changed via this config.

cache_dir: During first time of training/evaluation the data will be cached to a tensorflow cache format. Default path is data_cache/<dataset_name>/<positional_encoding>. But it can be changed via this config.

distributed: In a multi-gpu setting you can set it to True, for distributed training.

batch_size: Batch size.

num_epochs: Maximum Number of epochs.

initial_lr: Initial learning rate. In case of warmup it is the maximum learning rate.

rlr_factor: Reduce LR on plateau factor. Setting it to a value >= 1.0 turns off Reduce LR.

rlr_patience: Reduce LR patience, i.e. the number of epochs after which LR is reduced if validation loss doesn't improve.

min_lr_factor: The factor by which the minimum LR is smaller, of the initial LR. Default is 0.01.

model_height: The number of layers L.

model_width: The dimensionality of the node channels d_h.

edge_width: The dimensionality of the edge channels d_e.

num_heads: The number of attention heads. Default is 8.

ffn_multiplier: FFN multiplier for both channels. Default is 2.0 .

virtual_nodes: number of virtual nodes. 0 (default) would result in global average pooling being used instead of virtual nodes.

upto_hop: Clipping value of the input distance matrix. A value of 1 (default) would result in adjacency matrix being used as input structural matrix.

mlp_layers: Dimensionality of the final MLP layers, specified as a list of factors with respect to d_h. Default is [0.5, 0.25].

gate_attention: Set this to False to get the ungated EGT variant (EGT-U).

dropout: Dropout rate for both channels. Default is 0.

edge_dropout: If specified, applies a different dropout rate to the edge channels.

edge_channel_type: Used to create ablated variants of EGT. A value of "residual" (default) implies pure/full EGT. "constrained" implies EGT-constrained. "bias" implies EGT-simple.

warmup_steps: If specified, performs a linear learning rate warmup for the specified number of gradient update steps.

total_steps: If specified, performs a cosine annealing after warmup, so that the model is trained for the specified number of steps.

[For SVD-based encodings]:

use_svd: Turning this off (False) would result in no positional encoding being used.

sel_svd_features: Rank of the SVD encodings r.

random_neg: Augment SVD encodings by random negation.

[For Eigenvectors encodings]:

use_eig: Turning this off (False) would result in no positional encoding being used.

sel_eig_features: Number of eigen vectors.

[For Distance prediction Objective (DO)]:

distance_target: Predict distance up to the specified hop, nu.

distance_loss: Factor by which to multiply the distance prediction loss, kappa.

Creation of the HDF5 Datasets from Scratch

We included two Jupyter notebooks to demonstrate how the HDF5 datasets are created

  • For the medium scale datasets view create_hdf_benchmarking_datasets.ipynb. You will need pytorch, ogb==1.1.1 and dgl==0.4.2 libraries to run the notebook. The notebook is also runnable on Google Colaboratory.
  • For the large scale pcqm4m dataset view create_hdf_pcqm4m.ipynb. You will need pytorch, ogb>=1.3.0 and rdkit>=2019.03.1 to run the notebook.

Python Environment

The Anaconda environment in which our experiments were conducted is specified in the environment.yml file.

Citation

Please cite the following paper if you find the code useful:

@article{hussain2021edge,
  title={Edge-augmented Graph Transformers: Global Self-attention is Enough for Graphs},
  author={Hussain, Md Shamim and Zaki, Mohammed J and Subramanian, Dharmashankar},
  journal={arXiv preprint arXiv:2108.03348},
  year={2021}
}
Owner
Md Shamim Hussain
Md Shamim Hussain is a Ph.D. student in Computer Science at Rensselaer Polytechnic Institute, NY. He got his B.Sc. and M.Sc. in EEE from BUET, Dhaka.
Md Shamim Hussain
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
This is a project built for FALLABOUT2021 event under SRMMIC, This project deals with NLP poetry generation.

FALLABOUT-SRMMIC 21 POETRY-GENERATION HINGLISH DESCRIPTION We have developed a NLP(natural language processing) model which automatically generates a

7 Sep 28, 2021
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
NLP Overview

NLP-Overview Introduction The field of NPL encompasses a variety of topics which involve the computational processing and understanding of human langu

PeterPham 1 Jan 13, 2022
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022
A framework for cleaning Chinese dialog data

A framework for cleaning Chinese dialog data

Yida 136 Dec 20, 2022
Crowd sourced training data for Rasa NLU models

NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free

Rasa 169 Dec 26, 2022
Machine learning classifiers to predict American Sign Language .

ASL-Classifiers American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United Stat

Tarek idrees 0 Feb 08, 2022
NLPShala , the best IDE for all Natural language processing tasks.

The revolutionary IDE for all NLP (Natural language processing) stuffs on the internet.

Abhi 3 Aug 08, 2021
auto_code_complete is a auto word-completetion program which allows you to customize it on your need

auto_code_complete v1.3 purpose and usage auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the m

RUO 2 Feb 22, 2022
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
Unsupervised Language Modeling at scale for robust sentiment classification

** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.

NVIDIA Corporation 1k Nov 17, 2022
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc

GUOKUN LAI 197 Dec 11, 2022
中文医疗信息处理基准CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

English | 中文说明 CBLUE AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For fur

452 Dec 30, 2022
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 358 Dec 24, 2022
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022