DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

Overview

DANeS - Open-source E-newspaper dataset

12613 Source: Technology vector created by macrovector - www.freepik.com.

DANeS is an open-source E-newspaper dataset by collaboration between DATASET .JSC (dataset.vn) and AIV Group (aivgroup.vn) that contains over 600.000 online paper's articles. The articles are gathered from a number of Vietnamese Publishing Houses such as: tuoitre.vn, baobinhduong.vn, baoquangbinh.vn, kinhtechungkhoan.vn, doanhnghiep.vn, vnexpress.net, ...

We hope to support the community by providing a multi-purpose set of raw data for different subjects (students, developers, companies, …). So if you create something with this dataset, please share with us through our e-mail: [email protected]

Table of Contents

  1. Folder Tree
  2. Data format
  3. Labeling process
  4. Reviewing process
  5. Updating process
  6. License of annotated dataset
  7. About-us

Folder Tree

DANeS
  |
  |____README.md
  |
  |____raw_data
  |	   |____ DANeS_batch_#1.json
  |	   |____ DANeS_batch_#2.json
  |	   |____ DANeS_batch_#3.json
  |	   |____ DANeS_batch_#4.json
  |	   |____ DANeS_batch_#5.json
  |	   |____ DANeS_batch_#6.json
  |	   |____ DANeS_batch_#7.json
  |	   |____ DANeS_batch_#8.json
  |	   |____ README.md
  |
  |____annotated_data
  |	   |____ #contains annotated data
  |
  |____model
	   |____ Train_opensource.py
	   |____ README.md
	   |____ LICENSE

Data format

The raw dataset is stored in raw_data folder with .json format and has been divided into 8 batches. Each batch has an array that contains many json and each json is a record of the dataset. Here’s the example of each record's format:

Key Type Description
text string title of the digital news
meta json metadata of the digital news
uri string link to the digital news
description string description of the digital news

Example for a record of dataset:

{
        "text": "Ba ra đi vào ngày nhận điểm thi, nữ sinh được hỗ trợ học phí",
        "meta": {
            		"description": "Ngày nhận được tin đỗ đại học cũng là lúc bố mất vì Covid-19, L.A dường như gục ngã. Thế nhưng, bên cạnh em đã có các mạnh thường quân hỏi han, hỗ trợ về kinh tế.",
            		"uri": "https://yan.vn/ba-ra-di-vao-ngay-nhan-diem-thi-nu-sinh-duoc-ho-tro-hoc-phi-277328.html"
        	}
}

Labeling process

  • Log in:

DANeS 1 (1)

  • Annotating:

    • The article should be classified under one out of three sentiment: Negative, Positive and Neutral.
    • The article will then be classified by 22 topics: World, Politics, Economics, Sports, Cultures, Entertainment,Technology, Science, Education, Daily life, Regulations, Real estate, Social, Traffic, Environment, Stock market, Covid-19, Breaking news, Game, Movies, Health, Travel, Unidentified. Each article can carry numerous relevant and suitable topics.

DANeS 2

Reviewing process

The admin or the owner of the project will select qualified reviewers based on their attitude and performance. Reviewing process contains two main phases: cross validation and project reviewing.

  • The person who is assigned to cross validating will be given 20% of the annotated records from other annotators. This person will also be in charge of re-correcting the mislabeled records.
  • After the cross validation phase, the person who is assigned to review the project will randomly pick 20 - 50% of the total annotated records. Records that are not meet the given quality can either be:
    • Re-corrected by the project reviewer.
    • Re-assigned and re-corrected by the formal annotator.

Updating process

  • The raw data is expected to be fully uploaded at one time.

  • The annotated records are expected to be updated once a month to official repository of DANeS (https://github.com/dataset-vn/DANeS)

License of annotated dataset

Giấy phép Creative Commons
The annotated dataset of DANeS is licensed under Creative Commons Attribution 4.0 International License.

This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials.

About us

DATASET .JSC - (+84) 98 442 0826 - [email protected]

Dataset’s mission is to support individuals and organizations with data collecting and data processing services by providing tools that simplify and enhance the efficiency of the processes. With the large and professional workers system, Dataset aspires to provide partners with a comprehensive and quality solution, suitable with the characteristics of the technology market.

Website: Dataset.vn

LinkedIn: Dataset.vn - Data Crowdsourcing Platform

Facebook: Dataset.vn - Data Crowdsourcing Platform

AIV Group - (+84) 931 458 189 - [email protected]

AIV Group aims to apply advanced technologies, especially Artificial Intelligence (AI), Cloud Computing, Big Data, … to digitize, modernize the long-established processes of information production and consumption in Viet Nam society. At the same time, we are working on solutions that solve new problems arising in the field of communication that relate to technology’s problems such as: fake news, images, videos are automatically cut and merged ..

Website: AIV Group

Facebook: AIV Group

Owner
DATASET .JSC
DATASET .JSC - A Data Crowdsourcing Platform
DATASET .JSC
Official code for "Parser-Free Virtual Try-on via Distilling Appearance Flows", CVPR 2021

Parser-Free Virtual Try-on via Distilling Appearance Flows, CVPR 2021 Official code for CVPR 2021 paper 'Parser-Free Virtual Try-on via Distilling App

395 Jan 03, 2023
Generate a cool README/About me page for your Github Profile

Github Profile README/ About Me Generator 💯 This webapp lets you build a cool README for your profile. A few inputs + ~15 mins = Your Github Profile

Rahul Banerjee 179 Jan 07, 2023
Ongoing research training transformer language models at scale, including: BERT & GPT-2

Megatron (1 and 2) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA.

NVIDIA Corporation 3.5k Dec 30, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Vikash Singh 5.3k Jan 01, 2023
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

Franck Dernoncourt 1.6k Dec 27, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
1 Jun 28, 2022
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023
Treemap visualisation of Maya scene files

Ever wondered which nodes are responsible for that 600 mb+ Maya scene file? Features Fast, resizable UI Parsing at 50 mb/sec Dependency-free, single-f

Marcus Ottosson 76 Nov 12, 2022
ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Fortalice Solutions, LLC 78 Dec 12, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 169 Jan 05, 2023
MMDA - multimodal document analysis

MMDA - multimodal document analysis

AI2 75 Jan 04, 2023
Pipeline for training LSA models using Scikit-Learn.

Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j

Dani El-Ayyass 23 Sep 05, 2022