End-2-end speech synthesis with recurrent neural networks

Overview

Introduction

New: Interactive demo using Google Colaboratory can be found here

TTS-Cube is an end-2-end speech synthesis system that provides a full processing pipeline to train and deploy TTS models.

It is entirely based on neural networks, requires no pre-aligned data and can be trained to produce audio just by using character or phoneme sequences.

Markdown does not allow embedding of audio files. For a better experience check-out the project's website.

For installation please follow these instructions. Training and usage examples can be found here. A notebook demo can be found here.

Output examples

Encoder outputs:

"Arată că interesul utilizatorilor de internet față de acțiuni ecologiste de genul Earth Hour este unul extrem de ridicat." encoder_output_1

"Pentru a contracara proiectul, Rusia a demarat un proiect concurent, South Stream, în care a încercat să atragă inclusiv o parte dintre partenerii Nabucco." encoder_output_2

Vocoder output (conditioned on gold-standard data)

Note: The mel-spectrum is computed with a frame-shift of 12.5ms. This means that Griffin-Lim reconstruction produces sloppy results at most (regardless on the number of iterations)

original        vocoder

original        vocoder

original        vocoder

End to end decoding

The encoder model is still converging, so right now the examples are still of low quality. We will update the files as soon as we have a stable Encoder model.

synthesized         original(unseen)

synthesized         original(unseen)

synthesized         original(unseen)

synthesized         original(unseen)

Technical details

TTS-Cube is based on concepts described in Tacotron (1 and 2), Char2Wav and WaveRNN, but it's architecture does not stick to the exact recipes:

  • It has a dual-architecture, composed of (a) a module (Encoder) that converts sequences of characters or phonemes into mel-log spectrogram and (b) a RNN-based Vocoder that is conditioned on the spectrogram to produce audio
  • The Encoder is similar to those proposed in Tacotron (Wang et al., 2017) and Char2Wav (Sotelo et al., 2017), but
    • has a lightweight architecture with just a two-layer BDLSTM encoder and a two-layer LSTM decoder
    • uses the guided attention trick (Tachibana et al., 2017), which provides incredibly fast convergence of the attention module (in our experiments we were unable to reach an acceptable model without this trick)
    • does not employ any CNN/pre-net or post-net
    • uses a simple highway connection from the attention to the output of the decoder (which we observed that forces the encoder to actually learn how to produce the mean-values of the mel-log spectrum for particular phones/characters)
  • The initail vocoder was similar to WaveRNN(Kalchbrenner et al., 2018), but instead of modifying the RNN cells (as proposed in their paper), we used two coupled neural networks
  • We are now using Clarinet (Ping et al., 2018)

References

The ParallelWavenet/ClariNet code is adapted from this ClariNet repo.

Pangu-Alpha for Transformers

Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and

One 5 Oct 01, 2022
Help you discover excellent English projects and get rid of disturbing by other spoken language

GitHub English Top Charts 「Help you discover excellent English projects and get

GrowingGit 544 Jan 09, 2023
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Mkdocs + material + cool stuff

Modern-Python-Doc-Example mkdocs + material + cool stuff Doc is live here Features out of the box amazing good looking website thanks to mkdocs.org an

Francesco Saverio Zuppichini 61 Oct 26, 2022
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

Won Joon Yoo 335 Jan 04, 2023
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

1 Nov 08, 2021
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022
RIDE automatically creates the package and boilerplate OOP Python node scripts as per your needs

RIDE: ROS IDE RIDE automatically creates the package and boilerplate OOP Python code for nodes as per your needs (RIDE is not an IDE, but even ROS isn

Jash Mota 20 Jul 14, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
Blackstone is a spaCy model and library for processing long-form, unstructured legal text

Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f

ICLR&D 579 Jan 08, 2023
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
Experiments in converting wikidata to ftm

FollowTheMoney / Wikidata mappings This repo will contain tools for converting Wikidata entities into FtM schema. Prefixes: https://www.mediawiki.org/

Friedrich Lindenberg 2 Nov 12, 2021