Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Overview

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker

Earlier this year we announced a strategic collaboration with Amazon to make it easier for companies to use Hugging Face Transformers in Amazon SageMaker, and ship cutting-edge Machine Learning features faster. We introduced new Hugging Face Deep Learning Containers (DLCs) to train and deploy Hugging Face Transformers in Amazon SageMaker.

In addition to the Hugging Face Inference DLCs, we created a Hugging Face Inference Toolkit for SageMaker. This Inference Toolkit leverages the pipelines from the transformers library to allow zero-code deployments of models, without requiring any code for pre-or post-processing.

In October and November, we held a workshop series on “Enterprise-Scale NLP with Hugging Face & Amazon SageMaker”. This workshop series consisted out of 3 parts and covers:

  • Getting Started with Amazon SageMaker: Training your first NLP Transformer model with Hugging Face and deploying it
  • Going Production: Deploying, Scaling & Monitoring Hugging Face Transformer models with Amazon SageMaker
  • MLOps: End-to-End Hugging Face Transformers with the Hub & SageMaker Pipelines

We recorded all of them so you are now able to do the whole workshop series on your own to enhance your Hugging Face Transformers skills with Amazon SageMaker or vice-versa.

Below you can find all the details of each workshop and how to get started.

🧑🏻‍💻 Github Repository: https://github.com/philschmid/huggingface-sagemaker-workshop-series

📺   Youtube Playlist: https://www.youtube.com/playlist?list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ

Note: The Repository contains instructions on how to access a temporary AWS, which was available during the workshops. To be able to do the workshop now you need to use your own or your company AWS Account.

In Addition to the workshop we created a fully dedicated Documentation for Hugging Face and Amazon SageMaker, which includes all the necessary information. If the workshop is not enough for you we also have 15 additional getting samples Notebook Github repository, which cover topics like distributed training or leveraging Spot Instances.

Workshop 1: Getting Started with Amazon SageMaker: Training your first NLP Transformer model with Hugging Face and deploying it

In Workshop 1 you will learn how to use Amazon SageMaker to train a Hugging Face Transformer model and deploy it afterwards.

  • Prepare and upload a test dataset to S3
  • Prepare a fine-tuning script to be used with Amazon SageMaker Training jobs
  • Launch a training job and store the trained model into S3
  • Deploy the model after successful training

🧑🏻‍💻 Code Assets: https://github.com/philschmid/huggingface-sagemaker-workshop-series/tree/main/workshop_1_getting_started_with_amazon_sagemaker

📺  Youtube: https://www.youtube.com/watch?v=pYqjCzoyWyo&list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ&index=6&t=5s&ab_channel=HuggingFace

Workshop 2: Going Production: Deploying, Scaling & Monitoring Hugging Face Transformer models with Amazon SageMaker

In Workshop 2 learn how to use Amazon SageMaker to deploy, scale & monitor your Hugging Face Transformer models for production workloads.

  • Run Batch Prediction on JSON files using a Batch Transform
  • Deploy a model from hf.co/models to Amazon SageMaker and run predictions
  • Configure autoscaling for the deployed model
  • Monitor the model to see avg. request time and set up alarms

🧑🏻‍💻 Code Assets: https://github.com/philschmid/huggingface-sagemaker-workshop-series/tree/main/workshop_2_going_production

📺  Youtube: https://www.youtube.com/watch?v=whwlIEITXoY&list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ&index=6&t=61s

Workshop 3: MLOps: End-to-End Hugging Face Transformers with the Hub & SageMaker Pipelines

In Workshop 3 learn how to build an End-to-End MLOps Pipeline for Hugging Face Transformers from training to production using Amazon SageMaker.

We are going to create an automated SageMaker Pipeline which:

  • processes a dataset and uploads it to s3
  • fine-tunes a Hugging Face Transformer model with the processed dataset
  • evaluates the model against an evaluation set
  • deploys the model if it performed better than a certain threshold

🧑🏻‍💻 Code Assets: https://github.com/philschmid/huggingface-sagemaker-workshop-series/tree/main/workshop_3_mlops

📺  Youtube: https://www.youtube.com/watch?v=XGyt8gGwbY0&list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ&index=7

Access Workshop AWS Account

For this workshop you’ll get access to a temporary AWS Account already pre-configured with Amazon SageMaker Notebook Instances. Follow the steps in this section to login to your AWS Account and download the workshop material.

1. To get started navigate to - https://dashboard.eventengine.run/login

setup1

Click on Accept Terms & Login

2. Click on Email One-Time OTP (Allow for up to 2 mins to receive the passcode)

setup2

3. Provide your email address

setup3

4. Enter your OTP code

setup4

5. Click on AWS Console

setup5

6. Click on Open AWS Console

setup6

7. In the AWS Console click on Amazon SageMaker

setup7

8. Click on Notebook and then on Notebook instances

setup8

9. Create a new Notebook instance

setup9

10. Configure Notebook instances

  • Make sure to increase the Volume Size of the Notebook if you want to work with big models and datasets
  • Add your IAM_Role with permissions to run your SageMaker Training And Inference Jobs
  • Add the Workshop Github Repository to the Notebook to preload the notebooks: https://github.com/philschmid/huggingface-sagemaker-workshop-series.git

setup10

11. Open the Lab and select the right kernel you want to do and have fun!

Open the workshop you want to do (workshop_1_getting_started_with_amazon_sagemaker/) and select the pytorch kernel

setup11

Owner
Philipp Schmid
Machine Learning Engineer & Tech Lead at Hugging Face👨🏻‍💻 🤗 Cloud enthusiast ☁️ AWS ML HERO 🦸🏻‍♂️ Nuremberg 🇩🇪
Philipp Schmid
Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.

English|简体中文 ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在累积 40 余个典型 NLP 任务取得 SOTA 效果,并在 G

5.4k Jan 03, 2023
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

ASYML 2.3k Jan 07, 2023
jiant is an NLP toolkit

🚨 Update 🚨 : As of 2021/10/17, the jiant project is no longer being actively maintained. This means there will be no plans to add new models, tasks,

ML² AT CILVR 1.5k Dec 28, 2022
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Wojciech Muła 763 Dec 27, 2022
Pytorch version of BERT-whitening

BERT-whitening This is the Pytorch implementation of "Whitening Sentence Representations for Better Semantics and Faster Retrieval". BERT-whitening is

Weijie Liu 255 Dec 27, 2022
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
BeautyNet is an AI powered model which can tell you whether you're beautiful or not.

BeautyNet BeautyNet is an AI powered model which can tell you whether you're beautiful or not. Download Dataset from here:https://www.kaggle.com/gpios

Ansh Gupta 0 May 06, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
Sentello is python script that simulates the anti-evasion and anti-analysis techniques used by malware.

sentello Sentello is a python script that simulates the anti-evasion and anti-analysis techniques used by malware. For techniques that are difficult t

Malwation 62 Oct 02, 2022
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 220 Dec 11, 2022