Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Overview

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker

Earlier this year we announced a strategic collaboration with Amazon to make it easier for companies to use Hugging Face Transformers in Amazon SageMaker, and ship cutting-edge Machine Learning features faster. We introduced new Hugging Face Deep Learning Containers (DLCs) to train and deploy Hugging Face Transformers in Amazon SageMaker.

In addition to the Hugging Face Inference DLCs, we created a Hugging Face Inference Toolkit for SageMaker. This Inference Toolkit leverages the pipelines from the transformers library to allow zero-code deployments of models, without requiring any code for pre-or post-processing.

In October and November, we held a workshop series on “Enterprise-Scale NLP with Hugging Face & Amazon SageMaker”. This workshop series consisted out of 3 parts and covers:

  • Getting Started with Amazon SageMaker: Training your first NLP Transformer model with Hugging Face and deploying it
  • Going Production: Deploying, Scaling & Monitoring Hugging Face Transformer models with Amazon SageMaker
  • MLOps: End-to-End Hugging Face Transformers with the Hub & SageMaker Pipelines

We recorded all of them so you are now able to do the whole workshop series on your own to enhance your Hugging Face Transformers skills with Amazon SageMaker or vice-versa.

Below you can find all the details of each workshop and how to get started.

🧑🏻‍💻 Github Repository: https://github.com/philschmid/huggingface-sagemaker-workshop-series

📺   Youtube Playlist: https://www.youtube.com/playlist?list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ

Note: The Repository contains instructions on how to access a temporary AWS, which was available during the workshops. To be able to do the workshop now you need to use your own or your company AWS Account.

In Addition to the workshop we created a fully dedicated Documentation for Hugging Face and Amazon SageMaker, which includes all the necessary information. If the workshop is not enough for you we also have 15 additional getting samples Notebook Github repository, which cover topics like distributed training or leveraging Spot Instances.

Workshop 1: Getting Started with Amazon SageMaker: Training your first NLP Transformer model with Hugging Face and deploying it

In Workshop 1 you will learn how to use Amazon SageMaker to train a Hugging Face Transformer model and deploy it afterwards.

  • Prepare and upload a test dataset to S3
  • Prepare a fine-tuning script to be used with Amazon SageMaker Training jobs
  • Launch a training job and store the trained model into S3
  • Deploy the model after successful training

🧑🏻‍💻 Code Assets: https://github.com/philschmid/huggingface-sagemaker-workshop-series/tree/main/workshop_1_getting_started_with_amazon_sagemaker

📺  Youtube: https://www.youtube.com/watch?v=pYqjCzoyWyo&list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ&index=6&t=5s&ab_channel=HuggingFace

Workshop 2: Going Production: Deploying, Scaling & Monitoring Hugging Face Transformer models with Amazon SageMaker

In Workshop 2 learn how to use Amazon SageMaker to deploy, scale & monitor your Hugging Face Transformer models for production workloads.

  • Run Batch Prediction on JSON files using a Batch Transform
  • Deploy a model from hf.co/models to Amazon SageMaker and run predictions
  • Configure autoscaling for the deployed model
  • Monitor the model to see avg. request time and set up alarms

🧑🏻‍💻 Code Assets: https://github.com/philschmid/huggingface-sagemaker-workshop-series/tree/main/workshop_2_going_production

📺  Youtube: https://www.youtube.com/watch?v=whwlIEITXoY&list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ&index=6&t=61s

Workshop 3: MLOps: End-to-End Hugging Face Transformers with the Hub & SageMaker Pipelines

In Workshop 3 learn how to build an End-to-End MLOps Pipeline for Hugging Face Transformers from training to production using Amazon SageMaker.

We are going to create an automated SageMaker Pipeline which:

  • processes a dataset and uploads it to s3
  • fine-tunes a Hugging Face Transformer model with the processed dataset
  • evaluates the model against an evaluation set
  • deploys the model if it performed better than a certain threshold

🧑🏻‍💻 Code Assets: https://github.com/philschmid/huggingface-sagemaker-workshop-series/tree/main/workshop_3_mlops

📺  Youtube: https://www.youtube.com/watch?v=XGyt8gGwbY0&list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ&index=7

Access Workshop AWS Account

For this workshop you’ll get access to a temporary AWS Account already pre-configured with Amazon SageMaker Notebook Instances. Follow the steps in this section to login to your AWS Account and download the workshop material.

1. To get started navigate to - https://dashboard.eventengine.run/login

setup1

Click on Accept Terms & Login

2. Click on Email One-Time OTP (Allow for up to 2 mins to receive the passcode)

setup2

3. Provide your email address

setup3

4. Enter your OTP code

setup4

5. Click on AWS Console

setup5

6. Click on Open AWS Console

setup6

7. In the AWS Console click on Amazon SageMaker

setup7

8. Click on Notebook and then on Notebook instances

setup8

9. Create a new Notebook instance

setup9

10. Configure Notebook instances

  • Make sure to increase the Volume Size of the Notebook if you want to work with big models and datasets
  • Add your IAM_Role with permissions to run your SageMaker Training And Inference Jobs
  • Add the Workshop Github Repository to the Notebook to preload the notebooks: https://github.com/philschmid/huggingface-sagemaker-workshop-series.git

setup10

11. Open the Lab and select the right kernel you want to do and have fun!

Open the workshop you want to do (workshop_1_getting_started_with_amazon_sagemaker/) and select the pytorch kernel

setup11

Owner
Philipp Schmid
Machine Learning Engineer & Tech Lead at Hugging Face👨🏻‍💻 🤗 Cloud enthusiast ☁️ AWS ML HERO 🦸🏻‍♂️ Nuremberg 🇩🇪
Philipp Schmid
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 464 Jan 04, 2023
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
Twewy-discord-chatbot - Build a Discord AI Chatbot that Speaks like Your Favorite Character

Build a Discord AI Chatbot that Speaks like Your Favorite Character! This is a Discord AI Chatbot that uses the Microsoft DialoGPT conversational mode

Lynn Zheng 231 Dec 30, 2022
Active learning for text classification in Python

Active Learning allows you to efficiently label training data in a small-data scenario.

Webis 375 Dec 28, 2022
TalkNet: Audio-visual active speaker detection Model

Is someone talking? TalkNet: Audio-visual active speaker detection Model This repository contains the code for our ACM MM 2021 paper, TalkNet, an acti

142 Dec 14, 2022
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
Fixes mojibake and other glitches in Unicode text, after the fact.

ftfy: fixes text for you print(fix_encoding("(ง'⌣')ง")) (ง'⌣')ง Full documentation: https://ftfy.readthedocs.org Testimonials “My life is li

Luminoso Technologies, Inc. 3.4k Dec 29, 2022
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
This is the source code of RPG (Reward-Randomized Policy Gradient)

RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (

40 Nov 25, 2022
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR

Speech_38_ru_commands Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR Программа умеет распознавать 38 ключевы

Andrey 9 May 05, 2022
A full spaCy pipeline and models for scientific/biomedical documents.

This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds

AI2 1.3k Jan 03, 2023
Natural Language Processing for Adverse Drug Reaction (ADR) Detection

Natural Language Processing for Adverse Drug Reaction (ADR) Detection This repo contains code from a project to identify ADRs in discharge summaries a

Medicines Optimisation Service - Austin Health 21 Aug 05, 2022
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre

Kevin Canwen Xu 284 Nov 25, 2022
Curso práctico: NLP de cero a cien 🤗

Curso Práctico: NLP de cero a cien Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utili

Somos NLP 147 Jan 06, 2023
Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS) Yoonhyung Lee, Joongbo Shin, Kyomin Jung Abstract: Although early

LEE YOON HYUNG 147 Dec 05, 2022
Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Zhenhailong Wang 2 Jul 15, 2022
NLP: SLU tagging

NLP: SLU tagging

北海若 3 Jan 14, 2022
Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di

16 Oct 08, 2022