This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

Overview

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields

Project Page | Paper | Supplementary | Video | Slides | Blog | Talk

Add Clevr Tranlation Horizontal Cars Interpolate Shape Faces

If you find our code or paper useful, please cite as

@inproceedings{GIRAFFE,
    title = {GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields},
    author = {Niemeyer, Michael and Geiger, Andreas},
    booktitle = {Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021}
}

TL; DR - Quick Start

Rotating Cars Tranlation Horizontal Cars Tranlation Horizontal Cars

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called giraffe using

conda env create -f environment.yml
conda activate giraffe

You can now test our code on the provided pre-trained models. For example, simply run

python render.py configs/256res/cars_256_pretrained.yaml

This script should create a model output folder out/cars256_pretrained. The animations are then saved to the respective subfolders in out/cars256_pretrained/rendering.

Usage

Datasets

To train a model from scratch or to use our ground truth activations for evaluation, you have to download the respective dataset.

For this, please run

bash scripts/download_data.sh

and following the instructions. This script should download and unpack the data automatically into the data/ folder.

Controllable Image Synthesis

To render images of a trained model, run

python render.py CONFIG.yaml

where you replace CONFIG.yaml with the correct config file. The easiest way is to use a pre-trained model. You can do this by using one of the config files which are indicated with *_pretrained.yaml.

For example, for our model trained on Cars at 256x256 pixels, run

python render.py configs/256res/cars_256_pretrained.yaml

or for celebA-HQ at 256x256 pixels, run

python render.py configs/256res/celebahq_256_pretrained.yaml

Our script will automatically download the model checkpoints and render images. You can find the outputs in the out/*_pretrained folders.

Please note that the config files *_pretrained.yaml are only for evaluation or rendering, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pre-trained model.

FID Evaluation

For evaluation of the models, we provide the script eval.py. You can run it using

python eval.py CONFIG.yaml

The script generates 20000 images and calculates the FID score.

Note: For some experiments, the numbers in the paper might slightly differ because we used the evaluation protocol from GRAF to fairly compare against the methods reported in GRAF.

Training

Finally, to train a new network from scratch, run

python train.py CONFIG.yaml

where you replace CONFIG.yaml with the name of the configuration file you want to use.

You can monitor on http://localhost:6006 the training process using tensorboard:

cd OUTPUT_DIR
tensorboard --logdir ./logs

where you replace OUTPUT_DIR with the respective output directory. For available training options, please take a look at configs/default.yaml.

2D-GAN Baseline

For convinience, we have implemented a 2D-GAN baseline which closely follows this GAN_stability repo. For example, you can train a 2D-GAN on CompCars at 64x64 pixels similar to our GIRAFFE method by running

python train.py configs/64res/cars_64_2dgan.yaml

Using Your Own Dataset

If you want to train a model on a new dataset, you first need to generate ground truth activations for the intermediate or final FID calculations. For this, you can use the script in scripts/calc_fid/precalc_fid.py. For example, if you want to generate an FID file for the comprehensive cars dataset at 64x64 pixels, you need to run

python scripts/precalc_fid.py  "data/comprehensive_cars/images/*.jpg" --regex True --gpu 0 --out-file "data/comprehensive_cars/fid_files/comprehensiveCars_64.npz" --img-size 64

or for LSUN churches, you need to run

python scripts/precalc_fid.py path/to/LSUN --class-name scene_categories/church_outdoor_train_lmdb --lsun True --gpu 0 --out-file data/church/fid_files/church_64.npz --img-size 64

Note: We apply the same transformations to the ground truth images for this FID calculation as we do during training. If you want to use your own dataset, you need to adjust the image transformations in the script accordingly. Further, you might need to adjust the object-level and camera transformations to your dataset.

Evaluating Generated Images

We provide the script eval_files.py for evaluating the FID score of your own generated images. For example, if you would like to evaluate your images on CompCars at 64x64 pixels, save them to an npy file and run

python eval_files.py --input-file "path/to/your/images.npy" --gt-file "data/comprehensive_cars/fid_files/comprehensiveCars_64.npz"

Futher Information

More Work on Implicit Representations

If you like the GIRAFFE project, please check out related works on neural representions from our group:

Python utility library for compositing PDF documents with reportlab.

pdfdoc-py Python utility library for compositing PDF documents with reportlab. Installation The pdfdoc-py package can be installed directly from the s

Michael Gale 1 Jan 06, 2022
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library.

GI-Pi Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library. The SP0

Nick Bild 8 Dec 15, 2021
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech

TFPNER TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech Named entity recognition (NER), which aims at identifyin

1 Feb 07, 2022
Club chatbot

Chatbot Club chatbot Instructions to get the Chatterbot working Step 1. First make sure you are using a version of Python 3 or newer. To check your ve

5 Mar 07, 2022
πŸ“”οΈ Generate a text-based journal from a template file.

JGen πŸ“”οΈ Generate a text-based journal from a template file. Contents Getting Started Example Overview Usage Details Reserved Keywords Gotchas Getting

Harrison Broadbent 21 Sep 25, 2022
APEACH: Attacking Pejorative Expressions with Analysis on Crowd-generated Hate Speech Evaluation Datasets

APEACH - Korean Hate Speech Evaluation Datasets APEACH is the first crowd-generated Korean evaluation dataset for hate speech detection. Sentences of

Kevin-Yang 70 Dec 06, 2022
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
Lingtrain Aligner β€” ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Sergei Averkiev 76 Dec 14, 2022
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
πŸ€— The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

πŸ€— The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 02, 2023
Topic Inference with Zeroshot models

zeroshot_topics Table of Contents Installation Usage License Installation zeroshot_topics is distributed on PyPI as a universal wheel and is available

Rita Anjana 55 Nov 28, 2022
My Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks using Tensorflow

Easy Data Augmentation Implementation This repository contains my Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Per

Aflah 9 Oct 31, 2022
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)λŠ” λ‹€μ–‘ν•œ μ£Όμ œμ— λŒ€ν•œ λ¬Έμ„œ μ§‘ν•©μœΌλ‘œλΆ€ν„° μžμ—°μ–΄ μ§ˆμ˜μ— λŒ€ν•œ 닡변을 μ°Ύμ•„μ˜€λŠ” taskμž…λ‹ˆλ‹€. μ΄λ•Œ μ‚¬μš©μž μ§ˆμ˜μ— λ‹΅λ³€ν•˜κΈ° μœ„ν•΄ μ£Όμ–΄μ§€λŠ” 지문이 λ”°λ‘œ μ‘΄μž¬ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€. λ”°λΌμ„œ 사전에 κ΅¬μΆ•λ˜μ–΄μžˆλŠ” Knowl

VUMBLEB 69 Nov 04, 2022
Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

vanint 101 Dec 30, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Paddlespeech Streaming ASR GUI

Paddlespeech-Streaming-ASR-GUI Introduction A paddlespeech Streaming ASR GUI. Us

Niek Zhen 3 Jan 05, 2022
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022