precise iris segmentation

Overview

PI-DECODER

Introduction

PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below:

PI-DECODER

Please check technical paper.pdf in the "reference" subfolder for more details.

How to use?

For african dataset, you can enter the following script on your terminal:

python main.py --mode test --model_path ./models/african_best.pth --test_mode 1 --train_dataset african

Then you have iris mask, pupil mask and outer iris mask that are predicted by the input images. At the same time, the relevant index data will be displayed on your terminal.

(ijcb) PS F:\workspace\code\pytorch\PI-DECODER> python main.py --mode test --model_path ./models/african_best.pth --
test_mode 1 --train_dataset african
Namespace(batch_size=1, beta1=0.9, beta2=0.999, img_size=(640, 640), lr=0.0002, mode='test', model_path='./models/af
rican_best.pth', num_epochs=100, num_workers=2, result_path='./result/', test_mode=1, test_path='./dataset/test/', t
rain_dataset='african', train_path='./dataset/train/', valid_path='./dataset/valid/')
image count in train path :5
image count in valid path :5
image count in test path :40
Using Model: PI-DECODER
0.0688 seconds per image

----------------------------------------------------------------------------------------------------------------
|evaluation     |e1(%)          |e2(%)          |miou(%)        |f1(%)          |miou_back      |f1_back        |
----------------------------------------------------------------------------------------------------------------
|iris seg       |0.384026       |0.192013       |91.175200      |95.350625      |95.386805      |97.574698      |
|iris mask      |0.569627       |0.284813       |93.159855      |96.430411      |96.270919      |98.060105      |
|pupil mask     |0.078793       |0.039396       |93.138878      |96.409347      |96.529547      |98.184718      |
----------------------------------------------------------------------------------------------------------------
|average        |0.344149       |0.172074       |92.491311      |96.063461      |96.062424      |97.939840      |
----------------------------------------------------------------------------------------------------------------

Besides, if you don't have groud-truth files or just want to save the results, use test mode 2.

python main.py --mode test --model_path ./models/african_best.pth --test_mode 2 --train_dataset african

Requirements

The whole experiment was run on the NVIDIA RTX 3060. The following are recommended environment configurations.

matplotlib        3.3.4
numpy             1.19.5
opencv-python     4.5.1.48
pandas            1.1.5
Pillow            8.1.2
pip               21.0.1
pyparsing         2.4.7
python-dateutil   2.8.1
pytz              2021.1
scipy             1.5.4
setuptools        52.0.0.post20210125
six               1.15.0
thop              0.0.31.post2005241907
torch             1.7.0+cu110
torchstat         0.0.7
torchsummary      1.5.1
torchvision       0.8.1+cu110
Simple translation demo showcasing our headliner package.

Headliner Demo This is a demo showcasing our Headliner package. In particular, we trained a simple seq2seq model on an English-German dataset. We didn

Axel Springer News Media & Tech GmbH & Co. KG - Ideas Engineering 16 Nov 24, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022
Python library for parsing resumes using natural language processing and machine learning

CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the

nafiu 0 Jul 29, 2021
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
A list of NLP(Natural Language Processing) tutorials

NLP Tutorial A list of NLP(Natural Language Processing) tutorials built on PyTorch. Table of Contents A step-by-step tutorial on how to implement and

Allen Lee 1.3k Dec 25, 2022
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

Yongliang Shen 45 Nov 29, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating

LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)

Immanuvel Prathap S 1 Jan 16, 2022