Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Overview

Bellabeat-Analysis

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

BELLABEAT Case Study

How can a Wellness Technology Company Play It Smart?


Bellabeat

INTRODUCTION: Bellabeat is a high-tech manufacturer of health-focused smart products for women that keeps them informed of their health and activities inspiring and motivating them to take necessary steps in maintaining their health. The company has a variety of products namely the Bellabeat App, Leaf, Time, Spring and the Bellabeat Membership program to cater to gathering information on their activity, sleep, stress, menstrual cycle, mindfulness habits and water intake while also making their products stylish and wearable.
The aim of this report is to analyse non-Bellabeat devices’ smart device usage data to gain insights on some smart device trends, how these trends can be applied to Bellabeat customers and how these trends could be incorporated in any one Bellabeat product’s marketing strategy.
The key stakeholders in this task are Urska Srsen and Sando Mur, the cofounders of Bellabeat.




FINAL INSIGHTS AND SUGGESTIONS



INSIGHTS:

1. On an average, highest percentage of the Active Minutes composition is under SedentaryMinutes [81.3%], which means most users spend their day spending under 30 minutes of activity,that is equal to walking for 30 minutes at 4 miles per hour. For an adult of average weight, this amount of exercise will burn about 135 to 165 additional Calories.

Second highest makeup is of Lightly Active minutes [15.8%]. Roughly 3% of the makeup is composed of Very Active and Fairly Active Minutes in total.
From this we come to know that most of the sample users perform activities of daily living only, such as shopping, cleaning, watering plants, taking out the trash, walking the dog, mowing the lawn, and gardening. While a very small population spends active hours doing aerobics, jogging or skipping.

2. On an average, highest category of distance makeup is of Lightly Active Distance [61.7%], followed by Very active distances [27.8%] and then moderately active distances [10.5%].

3. On an average, users cover the highest no. of steps on Tuesdays and Thursdays of around 8000 steps. But we are not confident on Tuesday as it has more records.

4. On an average, most users have highest sleeping minutes of over 400 minutes i.e. 6.6 hours on Sundays and Wednesdays. But Wednesday is ruled out due to additional records on that day which poses skewness.

5. Average weight of users is found to be 72 kg and average BMI is found to be 25.18 which is found to be in overweight category.

6. Information on weight and bmi is more often manually recorded than done by users. Also, users are more likely to record their weights and bmi in the AM periods rather than PM periods.

7. User reports are mostly made between 6 o’clock to 9 o’clock each day, while manual reports are made at 11:59:59 pm each night.

8. Intensity counts highest between 8 – 11 am in the mornings, while highest between 12-2 pm and 5-7 pm in the afternoons and evenings.



APPLICATION OF INSIGHTS TO BELLABEAT PRODUCTS:

Goal-oriented:
1. For the Bellabeat app, based on the user's data on activity minutes, the app can suggest the user to take a few minutes out to achieve certain set goals and be active throughout the week.
2. The bellabeat app can monitor user's sleep records and suggest healthy sleeping schedules.

All this while monitoring how well the users keep up with the schedule and rewarding points as they complete each goal that can be converted to gift points for purchasing other lines of Bellabeat products for them and their loved ones.

Wellness Tracking:
1. Can incorporate weight and BMI measurement into Bellabeat App to inform and track user's health while using these data to add to the menstruation aid and letting the user's know how much exercise is needed and accordingly plan their day/week goals. [Weight and Menstrual Health Link]
2. Remind users to manually input their weight and BMI twice a week for all weeks and remove device calculated weight and bmi measurements as they can mislead. Can remind between 6-9 AM in the mornings.
3. Inform users when their intensity levels and stress levels peak and enable Zen mode (like a meditation period or a notification to rest for some minutes before continuing any work/task) to relieve of the high intensity/stress rates.



Owner
Leah Pathan Khan
Computer Science UnderGrad with interests in Data Science, ML and Designing .
Leah Pathan Khan
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.

RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB

106 Nov 28, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe

Dat Quoc Nguyen 152 Sep 02, 2022
YACLC - Yet Another Chinese Learner Corpus

汉语学习者文本多维标注数据集YACLC V1.0 中文 | English 汉语学习者文本多维标注数据集(Yet Another Chinese Learner

BLCU-ICALL 47 Dec 15, 2022
Conversational-AI-ChatBot - Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users!

Conversational AI ChatBot Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users! In this project? Thi

Rajkumar Lakshmanamoorthy 6 Nov 30, 2022
A library for Multilingual Unsupervised or Supervised word Embeddings

MUSE: Multilingual Unsupervised and Supervised Embeddings MUSE is a Python library for multilingual word embeddings, whose goal is to provide the comm

Facebook Research 3k Jan 06, 2023
Winner system (DAMO-NLP) of SemEval 2022 MultiCoNER shared task over 10 out of 13 tracks.

KB-NER: a Knowledge-based System for Multilingual Complex Named Entity Recognition The code is for the winner system (DAMO-NLP) of SemEval 2022 MultiC

116 Dec 27, 2022
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of

Sontag Lab 39 Nov 14, 2022
Facilitating the design, comparison and sharing of deep text matching models.

MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News

Neural Text Matching Community 3.7k Jan 02, 2023
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022
Tracking Progress in Natural Language Processing

Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks.

Sebastian Ruder 21.2k Dec 30, 2022
Header-only C++ HNSW implementation with python bindings

Hnswlib - fast approximate nearest neighbor search Header-only C++ HNSW implementation with python bindings. NEWS: version 0.6 Thanks to (@dyashuni) h

2.3k Jan 05, 2023
Simple Text-To-Speech Bot For Discord

Simple Text-To-Speech Bot For Discord This is a very simple TTS bot for discord made with python. For this bot you need FFMPEG, see installation to se

1 Sep 26, 2022
Nested Named Entity Recognition for Chinese Biomedical Text

CBio-NAMER CBioNAMER (Nested nAMed Entity Recognition for Chinese Biomedical Text) is our method used in CBLUE (Chinese Biomedical Language Understand

8 Dec 25, 2022