Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Overview

Bellabeat-Analysis

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

BELLABEAT Case Study

How can a Wellness Technology Company Play It Smart?


Bellabeat

INTRODUCTION: Bellabeat is a high-tech manufacturer of health-focused smart products for women that keeps them informed of their health and activities inspiring and motivating them to take necessary steps in maintaining their health. The company has a variety of products namely the Bellabeat App, Leaf, Time, Spring and the Bellabeat Membership program to cater to gathering information on their activity, sleep, stress, menstrual cycle, mindfulness habits and water intake while also making their products stylish and wearable.
The aim of this report is to analyse non-Bellabeat devices’ smart device usage data to gain insights on some smart device trends, how these trends can be applied to Bellabeat customers and how these trends could be incorporated in any one Bellabeat product’s marketing strategy.
The key stakeholders in this task are Urska Srsen and Sando Mur, the cofounders of Bellabeat.




FINAL INSIGHTS AND SUGGESTIONS



INSIGHTS:

1. On an average, highest percentage of the Active Minutes composition is under SedentaryMinutes [81.3%], which means most users spend their day spending under 30 minutes of activity,that is equal to walking for 30 minutes at 4 miles per hour. For an adult of average weight, this amount of exercise will burn about 135 to 165 additional Calories.

Second highest makeup is of Lightly Active minutes [15.8%]. Roughly 3% of the makeup is composed of Very Active and Fairly Active Minutes in total.
From this we come to know that most of the sample users perform activities of daily living only, such as shopping, cleaning, watering plants, taking out the trash, walking the dog, mowing the lawn, and gardening. While a very small population spends active hours doing aerobics, jogging or skipping.

2. On an average, highest category of distance makeup is of Lightly Active Distance [61.7%], followed by Very active distances [27.8%] and then moderately active distances [10.5%].

3. On an average, users cover the highest no. of steps on Tuesdays and Thursdays of around 8000 steps. But we are not confident on Tuesday as it has more records.

4. On an average, most users have highest sleeping minutes of over 400 minutes i.e. 6.6 hours on Sundays and Wednesdays. But Wednesday is ruled out due to additional records on that day which poses skewness.

5. Average weight of users is found to be 72 kg and average BMI is found to be 25.18 which is found to be in overweight category.

6. Information on weight and bmi is more often manually recorded than done by users. Also, users are more likely to record their weights and bmi in the AM periods rather than PM periods.

7. User reports are mostly made between 6 o’clock to 9 o’clock each day, while manual reports are made at 11:59:59 pm each night.

8. Intensity counts highest between 8 – 11 am in the mornings, while highest between 12-2 pm and 5-7 pm in the afternoons and evenings.



APPLICATION OF INSIGHTS TO BELLABEAT PRODUCTS:

Goal-oriented:
1. For the Bellabeat app, based on the user's data on activity minutes, the app can suggest the user to take a few minutes out to achieve certain set goals and be active throughout the week.
2. The bellabeat app can monitor user's sleep records and suggest healthy sleeping schedules.

All this while monitoring how well the users keep up with the schedule and rewarding points as they complete each goal that can be converted to gift points for purchasing other lines of Bellabeat products for them and their loved ones.

Wellness Tracking:
1. Can incorporate weight and BMI measurement into Bellabeat App to inform and track user's health while using these data to add to the menstruation aid and letting the user's know how much exercise is needed and accordingly plan their day/week goals. [Weight and Menstrual Health Link]
2. Remind users to manually input their weight and BMI twice a week for all weeks and remove device calculated weight and bmi measurements as they can mislead. Can remind between 6-9 AM in the mornings.
3. Inform users when their intensity levels and stress levels peak and enable Zen mode (like a meditation period or a notification to rest for some minutes before continuing any work/task) to relieve of the high intensity/stress rates.



Owner
Leah Pathan Khan
Computer Science UnderGrad with interests in Data Science, ML and Designing .
Leah Pathan Khan
An extension for asreview implements a version of the tf-idf feature extractor that saves the matrix and the vocabulary.

Extension - matrix and vocabulary extractor for TF-IDF and Doc2Vec An extension for ASReview that adds a tf-idf extractor that saves the matrix and th

ASReview 4 Jun 17, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

2 Jan 20, 2022
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe

OpenAI 1.3k Dec 28, 2022
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Snm Logic 1 Dec 20, 2021
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
Simple bots or Simbots is a library designed to create simple bots using the power of python. This library utilises Intent, Entity, Relation and Context model to create bots .

Simple bots or Simbots is a library designed to create simple chat bots using the power of python. This library utilises Intent, Entity, Relation and

14 Dec 15, 2021
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
Repo for Enhanced Seq2Seq Autoencoder via Contrastive Learning for Abstractive Text Summarization

ESACL: Enhanced Seq2Seq Autoencoder via Contrastive Learning for AbstractiveText Summarization This repo is for our paper "Enhanced Seq2Seq Autoencode

Rachel Zheng 14 Nov 01, 2022
TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

Alexa 98 Dec 09, 2022
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023
Telegram bot to auto post messages of one channel in another channel as soon as it is posted, without the forwarded tag.

Channel Auto-Post Bot This bot can send all new messages from one channel, directly to another channel (or group, just in case), without the forwarded

Aditya 128 Dec 29, 2022
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc

GUOKUN LAI 197 Dec 11, 2022
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe

Dat Quoc Nguyen 152 Sep 02, 2022
SDL: Synthetic Document Layout dataset

SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.

Sơn Nguyễn 0 Oct 07, 2021
Code-autocomplete, a code completion plugin for Python

Code AutoComplete code-autocomplete, a code completion plugin for Python.

xuming 13 Jan 07, 2023
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022