📔️ Generate a text-based journal from a template file.

Overview

JGen 📔️

Generate a text-based journal from a template file.

Contents

Getting Started

  1. Clone this repository -
  • git clone https://github.com/harrison-broadbent/JGen.git
  1. Edit "template.txt", copy and paste an example from /templates, or use the placeholder template -
  • vim template.txt
  1. Run JGen and follow the prompts -
  • python3 JGen.py
  1. Inspect "journal.txt" -
  • vim journal.txt

Example

Given the following template (available as templates/template_weekly.txt) -

_____________________________
Week: WEEKNUM, Year: YY
DD_NAME, DD MM_NAME - +++++++
DD_NAME, DD MM_NAME

Todos: - - -

Plans: - - -

and running JGen for two entries gives us -

_____________________________
Week: 10, Year: 2021
Saturday, 13 March -
Saturday, 20 March

Todos:
	-
	-
	-

Plans:
	-
	-
	-


_____________________________
Week: 11, Year: 2021
Saturday, 20 March -
Saturday, 27 March

Todos:
	-
	-
	-

Plans:
	-
	-
	-

Lets break down what happened -

  1. JGen sets it's internal date - "today's" date, from your perspective.
  2. JGen runs through line 1 and line 2 of template.txt, replacing keywords with their corresponding information and then writing the output to journal.txt.
  3. At the end of line 2 there are seven + (plus) symbols
    • JGen removes these from the output, and increments the internal date counter by 7 days.
  4. JGen fills out line 3 with the new date information, then fills out the rest of the information for the first entry.
  5. It then repeats this for the second entry, carrying over the date from the end of the first entry.
  6. JGen halts, with journal.txt containing our final output.

Overview

JGen parses a given template file to generate a journal file.

JGen runs through the template file and replaces keywords with their actual values (dates - day/month/year etc.), for a specified number of entries.

Usage

The JGen Python script contains all the code for the parser. To get started:

  • Download the JGen script.

  • Create a template.txt file (or download and rename one of the examples in /templates), and place it in the same directory as the JGen Python script.

    • See Details below for more information on creating a template.

    • See an Example to walk through a specific example of a template file.

  • Run the JGen Python script, and input the number of times the template should be reproduced.

    • Ex: 365 entries for a daily journal spanning a year, 52 entries for a weekly journal
  • journal.txt will be populated with text based on the template and the number of entries specified.

Details

See the Example section below if you want to jump straight into seeing how JGen works, by walking though an example.

JGen parses the template file, replacing any of the reserved keywords, shown below, with their corresponding date values.

Part of the templating process is to indicate using a (+) symbol when to increment the internal date counter, which JGen picks up as it parses the file. It also strips all (+) symbols from the file.

Reserved Keywords

  • DD

    • The date number.
    • 01, 05, 10, 21 etc.
  • MM

    • The month number.
    • 01, 10, 12 etc.
  • YY

    • The year.
    • 2020, 2021 etc.
  • DD_NAME

    • The name of the day.
    • Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
  • MM_NAME

    • January, February etc.
  • DAYNUM

    • Day number of the year.
    • 123, 340 etc.
  • WEEKNUM

    • Week number of the year.
    • 13, 51 etc.
  • +

    • used to increment the internal date counter

    • will only increment after the entire line has been parsed

      • for example, parsing
      DD/MM/YY+ - DD/MM/YY
      

      would give

      21/02/2050 - 21/02/2050
      

      and not

      21/02/2050 - 28/02/2050
      

Gotchas

  • + can only be used to increment the date.

    • All + symbols are removed from the output.
    • ie. journal.txt file will never contain a + character
  • As mentioned in the "reserved keywords" section of this readme, the + characters are only interpreted at the end of a line.

    • Currently, to work around this, just place the second date on a new line (like in templates/template_weekly.txt)

    • For example, parsing

      DD/MM/YY+ - DD/MM/YY
      

      would give

      21/02/2050 - 21/02/2050
      

      and not

      21/02/2050 - 28/02/2050
      
You might also like...
Count the frequency of letters or words in a text file and show a graph.

Word Counter By EBUS Coding Club Count the frequency of letters or words in a text file and show a graph. Requirements Python 3.9 or higher matplotlib

Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Comments
  • Please update docs with example for running JGen.py

    Please update docs with example for running JGen.py

    Hello, this looks interesting and I want to test things out.

    I couldn't run the script in under 1 minute so I'm showing what I did. Possibly a simple copy paste example in the docs will help.

    image

    opened by anrei0000 3
Releases(v0.1)
Owner
Harrison Broadbent
√67
Harrison Broadbent
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.

WordDumb A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. Languages X-Ray supp

172 Dec 29, 2022
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁

TGCLOUD 🪁 Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁 Features Easy to Deploy Heroku Supp

Mr.Acid dev 6 Oct 18, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

Rui Wang 6k Jan 02, 2023
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023
문장단위로 분절된 나무위키 데이터셋. Releases에서 다운로드 받거나, tfds-korean을 통해 다운로드 받으세요.

Namuwiki corpus 문장단위로 미리 분절된 나무위키 코퍼스. 목적이 LM등에서 사용하기 위한 데이터셋이라, 링크/이미지/테이블 등등이 잘려있습니다. 문장 단위 분절은 kss를 활용하였습니다. 라이선스는 나무위키에 명시된 바와 같이 CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
Need: Image Search With Python

Need: Image Search The problem is that a user needs to search for a specific ima

Surya Komandooru 1 Dec 30, 2021
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima

Brycen Westgarth 110 Jan 07, 2023
Code for lyric-section-to-comment generation based on huggingface transformers.

CommentGeneration Code for lyric-section-to-comment generation based on huggingface transformers. Migrate Guyu model and code (both 12-layers and 24-l

Yawei Sun 8 Sep 04, 2021
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022