ReCoin - Restoring our environment and businesses in parallel

Related tags

Text Data & NLPReCoin
Overview

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales

"Reduce Reuse Recoin"

Theme Covered:

The themes covered in this project include post pandemic restoration for both the environment, small buisnesses, and personal finance! The app pitched uses an extensivly trained AI system to detect trash and sort it to the proper bin from your smartphone. While using the app, users will be incentivized to use the app and recover the environment through the opportunity to earn points, which will be redeemable in partnering stores.

Problem Statment:

As our actions continue to damage the environment, it is important that we invest in solutions that help restore our community in more sustainable practices. Moreover, an average person creates over 4 pounds of trash a day, and the EPA has found that over 75% of the waste we create are recyclable. As garbage sorting is so niche from town-to-town, students have reportable agreed to the difficulty of accurately sorting garbage, thus causing this significant misplacement of garbage.

Our passion to make our community globally and locally more sustainable has fueled us to use artificial intelligence to develop an app that not only makes sorting garbage as easy as using Snapchat, but also rewards individuals for sorting their garbage properly.

For this reason, we would like to introduce Recoin. This intuitive app allows a person to scan any product and easily find the bin that the trash belongs based off their location. Furthermore, if they attempt to sell their product, or use our app, they will earn points which will be redeemable in partnering stores that advocate for the environment. The more the user uses the app, the more points they receive, resulting in better items to redeem in stores. With this app we will not only help recover the environment, but also increase sales in small businesses which struggled during the pandemic to recover.

About the App:

Incentive Breakdown:

Please note that these expenses are estimated expectations for potential benefit packages but are not defined yet.

We are proposing a $1 discount for participating small businesses when 100 coffee/drink cups are returned to participating restaurants. This will be easy for small companies to uphold financially, while providing a motivation for individuals to use our scanner.

Amazon costs around $0.5 to $2 on packaging, so we are proposing that Amazon provides a $15 gift card per 100 packages returned to Amazon. As the 100 packages can cost from $50 to $200, this incentive will save Amazon resources by 5 to 100 times the amount, while providing positive public perception for reusing.

As recycling plastic for 3D filament is an up-and-coming technology that can revolutionize environment sustainability, we would like to create a system where providing materials for such causes can give the individuals benefits.

Lastly, as metals become more valuable, we hope to provide recyclable metals to companies to reduce their expenses through our platform.

The next steps to this endeavor will be to provide benefits for individuals that provide batteries and electronics with some sort of incentive as well.

User Interface:

#add user stuff!!!!!!!!!!!1

Technological Specifics and Next Steps:

Frontend

----ADDDDDDDDDDDD GRAPHHHHHHHHHHHHHHHHHHHHHHHH____ We used to React.JS to develop components for the webcam footage and capture screen shots. It was also utilized to create the rest of the overall UI design.

Backend

Trash Detection AI:

On Pytorch, we utilized an open-source trash detection AI software and data, to train the trash detection system originally developed by IamAbhinav03. The system utilizes over 2500 images to train, test, and validate the system. To improve the system, we increased the number of epochs to 8 rather than 5 (number of passes the training system has completed) to train it for an additional four hours than required. This allowed the accuracy to increase by 4% more than the original system. We also modified the test train and split amounts to 70%, 10%, and 20% respectively, as more prominent AI studies have found this distribution to receive the best results.

Currently, the system is predicted to have a 94% accuracy, but in the future, we plan on using reinforcement learning in our beta testing to continuously improve our algorithm. Reinforcement learning allows for the data to be more accurate, through learning from user correction. This will allow AI to become more precise as it gains more popularity.

Other Systems:

By using Matbox API and the Google Suite/API, we will be creating maps to find recycling locations and an extensively thorough Recoin currency system that can easily be transferred to real time money for consumers and businesses.

Stakeholders:

After the completion of this project, we intend to continue to pursue the app to improve our communities’ sustainability. After looking at the demographic of interest in our school itself, we know that students will be interested in this app, not only from convenience but also through the reward system. Local cafes and Starbucks already have initiatives to improve public perspective and support the environment (i.e., using paper straws and cups), therefore supporting this new endeavor will be an interest to them. As branding is everything in a business, having a positive public perspective will increase sales.

Amazon:

As Amazon continues to be the leading online marketplace, more packages will continue to be made, which can be detrimental to the world's limited resources. We will be training the UI to track packages that are Amazon based. With such training, we would like to be able to implement a system where the packaging can be sent back to Amazon to be reused for credit. This will allow Amazon to form a more environmentally friendly corporate image, while also saving on resources.

Small Businesses:

As the pandemic has caused a significant decline in small business revenue, we intend to mainly partner with small businesses in this project. The software will also help increase small business sales as by supporting the app, students will be more inclined to go to their store due to a positive public image, and the additive discounts will attract more customers. In the future, we wish to train AI to also detect trash of value (i.e.. Broken smartphones, precious metals), so that consumers can sell it in a bundle to local companies that can benefit from the material (ex: 3D-printing companies that convert used plastic to filament)

Timeline:

The following timeline will be used to ensure that our project will be on the market as soon as possible:

Code Refrences

https://medium.datadriveninvestor.com/deploy-your-pytorch-model-to-production-f69460192217

https://narainsreehith.medium.com/upload-image-video-to-flask-backend-from-react-native-app-expo-app-1aac5653d344

https://pytorch.org/tutorials/beginner/saving_loading_models.html

https://pytorch.org/tutorials/intermediate/flask_rest_api_tutorial.html

https://pytorch.org/get-started/locally/

https://www.kdnuggets.com/2019/03/deploy-pytorch-model-production.html

Refrences for Information

https://www.rubicon.com/blog/trash-reason-statistics-facts/

https://www.dosomething.org/us/facts/11-facts-about-recycling

https://www.forbes.com/sites/forbesagencycouncil/2016/10/31/why-brand-image-matters-more-than-you-think/?sh=6a4b462e10b8

https://www.channelreply.com/blog/view/ebay-amazon-packaging-costs

Owner
sabrina button
First Year Engineering Student at Queen's University (she/her)
sabrina button
A list of NLP(Natural Language Processing) tutorials

NLP Tutorial A list of NLP(Natural Language Processing) tutorials built on PyTorch. Table of Contents A step-by-step tutorial on how to implement and

Allen Lee 1.3k Dec 25, 2022
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
OpenChat: Opensource chatting framework for generative models

OpenChat is opensource chatting framework for generative models.

Hyunwoong Ko 427 Jan 06, 2023
Convolutional Neural Networks for Sentence Classification

Convolutional Neural Networks for Sentence Classification Code for the paper Convolutional Neural Networks for Sentence Classification (EMNLP 2014). R

Yoon Kim 2k Jan 02, 2023
SentAugment is a data augmentation technique for semi-supervised learning in NLP.

SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur

Meta Research 363 Dec 30, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
The SVO-Probes Dataset for Verb Understanding

The SVO-Probes Dataset for Verb Understanding This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object unders

DeepMind 20 Nov 30, 2022
Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Wojciech Muła 763 Dec 27, 2022
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
Telegram AI chat bot written in Python using Pyrogram

Aurora_Al Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @AuroraAl. Require

♗CσNϙUҽRσR_MҽSƙEƚҽҽR 1 Oct 31, 2021
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2

Google Research Datasets 52 Jun 21, 2022
Protein Language Model

ProteinLM We pretrain protein language model based on Megatron-LM framework, and then evaluate the pretrained model results on TAPE (Tasks Assessing P

THUDM 77 Dec 27, 2022
CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023
Curso práctico: NLP de cero a cien 🤗

Curso Práctico: NLP de cero a cien Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utili

Somos NLP 147 Jan 06, 2023
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022