ReCoin - Restoring our environment and businesses in parallel

Related tags

Text Data & NLPReCoin
Overview

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales

"Reduce Reuse Recoin"

Theme Covered:

The themes covered in this project include post pandemic restoration for both the environment, small buisnesses, and personal finance! The app pitched uses an extensivly trained AI system to detect trash and sort it to the proper bin from your smartphone. While using the app, users will be incentivized to use the app and recover the environment through the opportunity to earn points, which will be redeemable in partnering stores.

Problem Statment:

As our actions continue to damage the environment, it is important that we invest in solutions that help restore our community in more sustainable practices. Moreover, an average person creates over 4 pounds of trash a day, and the EPA has found that over 75% of the waste we create are recyclable. As garbage sorting is so niche from town-to-town, students have reportable agreed to the difficulty of accurately sorting garbage, thus causing this significant misplacement of garbage.

Our passion to make our community globally and locally more sustainable has fueled us to use artificial intelligence to develop an app that not only makes sorting garbage as easy as using Snapchat, but also rewards individuals for sorting their garbage properly.

For this reason, we would like to introduce Recoin. This intuitive app allows a person to scan any product and easily find the bin that the trash belongs based off their location. Furthermore, if they attempt to sell their product, or use our app, they will earn points which will be redeemable in partnering stores that advocate for the environment. The more the user uses the app, the more points they receive, resulting in better items to redeem in stores. With this app we will not only help recover the environment, but also increase sales in small businesses which struggled during the pandemic to recover.

About the App:

Incentive Breakdown:

Please note that these expenses are estimated expectations for potential benefit packages but are not defined yet.

We are proposing a $1 discount for participating small businesses when 100 coffee/drink cups are returned to participating restaurants. This will be easy for small companies to uphold financially, while providing a motivation for individuals to use our scanner.

Amazon costs around $0.5 to $2 on packaging, so we are proposing that Amazon provides a $15 gift card per 100 packages returned to Amazon. As the 100 packages can cost from $50 to $200, this incentive will save Amazon resources by 5 to 100 times the amount, while providing positive public perception for reusing.

As recycling plastic for 3D filament is an up-and-coming technology that can revolutionize environment sustainability, we would like to create a system where providing materials for such causes can give the individuals benefits.

Lastly, as metals become more valuable, we hope to provide recyclable metals to companies to reduce their expenses through our platform.

The next steps to this endeavor will be to provide benefits for individuals that provide batteries and electronics with some sort of incentive as well.

User Interface:

#add user stuff!!!!!!!!!!!1

Technological Specifics and Next Steps:

Frontend

----ADDDDDDDDDDDD GRAPHHHHHHHHHHHHHHHHHHHHHHHH____ We used to React.JS to develop components for the webcam footage and capture screen shots. It was also utilized to create the rest of the overall UI design.

Backend

Trash Detection AI:

On Pytorch, we utilized an open-source trash detection AI software and data, to train the trash detection system originally developed by IamAbhinav03. The system utilizes over 2500 images to train, test, and validate the system. To improve the system, we increased the number of epochs to 8 rather than 5 (number of passes the training system has completed) to train it for an additional four hours than required. This allowed the accuracy to increase by 4% more than the original system. We also modified the test train and split amounts to 70%, 10%, and 20% respectively, as more prominent AI studies have found this distribution to receive the best results.

Currently, the system is predicted to have a 94% accuracy, but in the future, we plan on using reinforcement learning in our beta testing to continuously improve our algorithm. Reinforcement learning allows for the data to be more accurate, through learning from user correction. This will allow AI to become more precise as it gains more popularity.

Other Systems:

By using Matbox API and the Google Suite/API, we will be creating maps to find recycling locations and an extensively thorough Recoin currency system that can easily be transferred to real time money for consumers and businesses.

Stakeholders:

After the completion of this project, we intend to continue to pursue the app to improve our communities’ sustainability. After looking at the demographic of interest in our school itself, we know that students will be interested in this app, not only from convenience but also through the reward system. Local cafes and Starbucks already have initiatives to improve public perspective and support the environment (i.e., using paper straws and cups), therefore supporting this new endeavor will be an interest to them. As branding is everything in a business, having a positive public perspective will increase sales.

Amazon:

As Amazon continues to be the leading online marketplace, more packages will continue to be made, which can be detrimental to the world's limited resources. We will be training the UI to track packages that are Amazon based. With such training, we would like to be able to implement a system where the packaging can be sent back to Amazon to be reused for credit. This will allow Amazon to form a more environmentally friendly corporate image, while also saving on resources.

Small Businesses:

As the pandemic has caused a significant decline in small business revenue, we intend to mainly partner with small businesses in this project. The software will also help increase small business sales as by supporting the app, students will be more inclined to go to their store due to a positive public image, and the additive discounts will attract more customers. In the future, we wish to train AI to also detect trash of value (i.e.. Broken smartphones, precious metals), so that consumers can sell it in a bundle to local companies that can benefit from the material (ex: 3D-printing companies that convert used plastic to filament)

Timeline:

The following timeline will be used to ensure that our project will be on the market as soon as possible:

Code Refrences

https://medium.datadriveninvestor.com/deploy-your-pytorch-model-to-production-f69460192217

https://narainsreehith.medium.com/upload-image-video-to-flask-backend-from-react-native-app-expo-app-1aac5653d344

https://pytorch.org/tutorials/beginner/saving_loading_models.html

https://pytorch.org/tutorials/intermediate/flask_rest_api_tutorial.html

https://pytorch.org/get-started/locally/

https://www.kdnuggets.com/2019/03/deploy-pytorch-model-production.html

Refrences for Information

https://www.rubicon.com/blog/trash-reason-statistics-facts/

https://www.dosomething.org/us/facts/11-facts-about-recycling

https://www.forbes.com/sites/forbesagencycouncil/2016/10/31/why-brand-image-matters-more-than-you-think/?sh=6a4b462e10b8

https://www.channelreply.com/blog/view/ebay-amazon-packaging-costs

Owner
sabrina button
First Year Engineering Student at Queen's University (she/her)
sabrina button
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning

GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning GrammarTagger is an open-source toolkit for grammatical profiling for lan

Octanove Labs 27 Jan 05, 2023
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.

A Infomation Grathering tool that reverse search phone numbers and get their details ! What is phomber? Phomber is one of the best tools available fo

S41R4J 121 Dec 27, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
Linking data between GBIF, Biodiverse, and Open Tree of Life

GBIF-biodiverse-OpenTree Linking data between GBIF, Biodiverse, and Open Tree of Life The python scripts will rely on opentree and Dendropy. To set up

2 Oct 03, 2022
基于Transformer的单模型、多尺度的VAE模型

UniVAE 基于Transformer的单模型、多尺度的VAE模型 介绍 https://kexue.fm/archives/8475 依赖 需要大于0.10.6版本的bert4keras(当前还没有推到pypi上,可以直接从GitHub上clone最新版)。 引用 @misc{univae,

苏剑林(Jianlin Su) 49 Aug 24, 2022
Natural language computational chemistry command line interface.

nlcc Install pip install nlcc Must have Open-AI Codex key: export OPENAI_API_KEY=your key here then nlcc key bindings ctrl-w copy to clipboard (Note

Andrew White 37 Dec 14, 2022
Levenshtein and Hamming distance computation

distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar

112 Dec 22, 2022
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022