EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Overview

Introduction EEGEyeNet

EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty.

Overview

The repository consists of general functionality to run the benchmark and custom implementation of different machine learning models. We offer to run standard ML models (e.g. kNN, SVR, etc.) on the benchmark. The implementation can be found in the StandardML_Models directory.

Additionally, we implemented a variety of deep learning models. These are implemented and can be run in both pytorch and tensorflow.

The benchmark consists of three tasks: LR (left-right), Direction (Angle, Amplitude) and Coordinates (x,y)

Installation (Environment)

There are many dependencies in this benchmark and we propose to use anaconda as package manager.

You can install a full environment to run all models (standard machine learning and deep learning models in both pytorch and tensorflow) from the eegeyenet_benchmark.yml file. To do so, run:

conda env create -f eegeyenet_benchmark.yml

Otherwise you can also only create a minimal environment that is able to run the models that you want to try (see following section).

General Requirements

Create a new conda environment:

conda create -n eegeyenet_benchmark python=3.8.5 

First install the general_requirements.txt

conda install --file general_requirements.txt 

Pytorch Requirements

If you want to run the pytorch DL models, first install pytorch in the recommended way. For Linux users with GPU support this is:

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch 

For other installation types and cuda versions, visit pytorch.org.

Tensorflow Requirements

If you want to run the tensorflow DL models, run

conda install --file tensorflow_requirements.txt 

Standard ML Requirements

If you want to run the standard ML models, run

conda install --file standard_ml_requirements.txt 

This should be installed after installing pytorch to not risk any dependency issues that have to be resolved by conda.

Configuration

The model configuration takes place in hyperparameters.py. The training configuration is contained in config.py.

config.py

We start by explaining the settings that can be made for running the benchmark:

Choose the task to run in the benchmark, e.g.

config['task'] = 'LR_task'

For some tasks we offer data from multiple paradigms. Choose the dataset used for the task, e.g.

config['dataset'] = 'antisaccade'

Choose the preprocessing variant, e.g.

config['preprocessing'] = 'min'

Choose data preprocessed with Hilbert transformation. Set to True for the standard ML models:

config['feature_extraction'] = True

Include our standard ML models into the benchmark run:

config['include_ML_models'] = True 

Include our deep learning models into the benchmark run:

config['include_DL_models'] = True

Include your own models as specified in hyperparameters.py. For instructions on how to create your own custom models see further below.

config['include_your_models'] = True

Include dummy models for comparison into the benchmark run:

config['include_dummy_models'] = True

You can either choose to train models or use existing ones in /run/ and perform inference with them. Set

config['retrain'] = True 
config['save_models'] = True 

to train your specified models. Set both to False if you want to load existing models and perform inference. In this case specify the path to your existing model directory under

config['load_experiment_dir'] = path/to/your/model 

In the model configuration section you can specify which framework you want to use. You can run our deep learning models in both pytorch and tensorflow. Just specify it in config.py, make sure you set up the environment as explained above and everything specific to the framework will be handled in the background.

config.py also allows to configure hyperparameters such as the learning rate, and enable early stopping of models.

hyperparameters.py

Here we define our models. Standard ML models and deep learning models are configured in a dictionary which contains the object of the model and hyperparameters that are passed when the object is instantiated.

You can add your own models in the your_models dictionary. Specify the models for each task separately. Make sure to enable all the models that you want to run in config.py.

Running the benchmark

Create a /runs directory to save files while running models on the benchmark.

benchmark.py

In benchmark.py we load all models specified in hyperparameters.py. Each model is fitted and then evaluated with the scoring function corresponding to the task that is benchmarked.

main.py

To start the benchmark, run

python3 main.py

A directory of the current run is created, containing a training log, saving console output and model checkpoints of all runs.

Add Custom Models

To benchmark models we use a common interface we call trainer. A trainer is an object that implements the following methods:

fit() 
predict() 
save() 
load() 

Implementation of custom models

To implement your own custom model make sure that you create a class that implements the above methods. If you use library models, make sure to wrap them into a class that implements above interface used in our benchmark.

Adding custom models to our benchmark pipeline

In hyperparameters.py add your custom models into the your_models dictionary. You can add objects that implement the above interface. Make sure to enable your custom models in config.py.

Owner
Ard Kastrati
Ard Kastrati
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022