PyTorch implementation of GLOM

Overview

GLOM

PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attention (consensus between columns).

1. Overview

An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset.

2. Usage

2 - 1. PyTorch version

import torch
from pyglom import GLOM

model = GLOM(
    dim = 512,         # dimension
    levels = 6,        # number of levels
    image_size = 224,  # image size
    patch_size = 14    # patch size
)

img = torch.randn(1, 3, 224, 224)
levels = model(img, iters = 12) # (1, 256, 6, 512) - (batch - patches - levels - dimension)

Pass the return_all = True keyword argument on forward, and you will be returned all the column and level states per iteration, (including the initial state, number of iterations + 1). You can then use this to attach any losses to any level outputs at any time step.

It also gives you access to all the level data across iterations for clustering, from which one can inspect for the theorized islands in the paper.

import torch
from pyglom import GLOM

model = GLOM(
    dim = 512,         # dimension
    levels = 6,        # number of levels
    image_size = 224,  # image size
    patch_size = 14    # patch size
)

img = torch.randn(1, 3, 224, 224)
all_levels = model(img, iters = 12, return_all = True) # (13, 1, 256, 6, 512) - (time, batch, patches, levels, dimension)

# get the top level outputs after iteration 6
top_level_output = all_levels[7, :, :, -1] # (1, 256, 512) - (batch, patches, dimension)

Denoising self-supervised learning for encouraging emergence, as described by Hinton

import torch
import torch.nn.functional as F
from torch import nn
from einops.layers.torch import Rearrange

from pyglom import GLOM

model = GLOM(
    dim = 512,         # dimension
    levels = 6,        # number of levels
    image_size = 224,  # image size
    patch_size = 14    # patch size
)

img = torch.randn(1, 3, 224, 224)
noised_img = img + torch.randn_like(img)

all_levels = model(noised_img, return_all = True)

patches_to_images = nn.Sequential(
    nn.Linear(512, 14 * 14 * 3),
    Rearrange('b (h w) (p1 p2 c) -> b c (h p1) (w p2)', p1 = 14, p2 = 14, h = (224 // 14))
)

top_level = all_levels[7, :, :, -1]  # get the top level embeddings after iteration 6
recon_img = patches_to_images(top_level)

# do self-supervised learning by denoising

loss = F.mse_loss(img, recon_img)
loss.backward()

You can pass in the state of the column and levels back into the model to continue where you left off (perhaps if you are processing consecutive frames of a slow video, as mentioned in the paper)

import torch
from pyglom import GLOM

model = GLOM(
    dim = 512,
    levels = 6,
    image_size = 224,
    patch_size = 14
)

img1 = torch.randn(1, 3, 224, 224)
img2 = torch.randn(1, 3, 224, 224)
img3 = torch.randn(1, 3, 224, 224)

levels1 = model(img1, iters = 12)                   # image 1 for 12 iterations
levels2 = model(img2, levels = levels1, iters = 10) # image 2 for 10 iteratoins
levels3 = model(img3, levels = levels2, iters = 6)  # image 3 for 6 iterations

2 - 2. PyTorch-Lightning version

The pyglom also provides the GLOM model that is implemented with PyTorch-Lightning.

from torchvision.datasets import MNIST
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import os
from pytorch_lightning.callbacks import ModelCheckpoint


from pyglom.glom import LightningGLOM


dataset = MNIST(os.getcwd(), download=True, transform=transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor()
]))
train, val = random_split(dataset, [55000, 5000])

glom = LightningGLOM(
    dim=256,         # dimension
    levels=6,        # number of levels
    image_size=256,  # image size
    patch_size=16,   # patch size
    img_channels=1
)

gpus = torch.cuda.device_count()
trainer = pl.Trainer(gpus=gpus, max_epochs=5)
trainer.fit(glom, DataLoader(train, batch_size=8, num_workers=2), DataLoader(val, batch_size=8, num_workers=2))

3. ToDo

  • contrastive / consistency regularization of top-ish levels

4. Citations

@misc{hinton2021represent,
    title   = {How to represent part-whole hierarchies in a neural network}, 
    author  = {Geoffrey Hinton},
    year    = {2021},
    eprint  = {2102.12627},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
You might also like...
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Releases(0.0.3)
Owner
Yeonwoo Sung
2020-09-21 ~ 2022-06-20 RoK (Korea) Air Force
Yeonwoo Sung
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
An implementation of the proximal policy optimization algorithm

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022