PyTorch implementation of GLOM

Overview

GLOM

PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attention (consensus between columns).

1. Overview

An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset.

2. Usage

2 - 1. PyTorch version

import torch
from pyglom import GLOM

model = GLOM(
    dim = 512,         # dimension
    levels = 6,        # number of levels
    image_size = 224,  # image size
    patch_size = 14    # patch size
)

img = torch.randn(1, 3, 224, 224)
levels = model(img, iters = 12) # (1, 256, 6, 512) - (batch - patches - levels - dimension)

Pass the return_all = True keyword argument on forward, and you will be returned all the column and level states per iteration, (including the initial state, number of iterations + 1). You can then use this to attach any losses to any level outputs at any time step.

It also gives you access to all the level data across iterations for clustering, from which one can inspect for the theorized islands in the paper.

import torch
from pyglom import GLOM

model = GLOM(
    dim = 512,         # dimension
    levels = 6,        # number of levels
    image_size = 224,  # image size
    patch_size = 14    # patch size
)

img = torch.randn(1, 3, 224, 224)
all_levels = model(img, iters = 12, return_all = True) # (13, 1, 256, 6, 512) - (time, batch, patches, levels, dimension)

# get the top level outputs after iteration 6
top_level_output = all_levels[7, :, :, -1] # (1, 256, 512) - (batch, patches, dimension)

Denoising self-supervised learning for encouraging emergence, as described by Hinton

import torch
import torch.nn.functional as F
from torch import nn
from einops.layers.torch import Rearrange

from pyglom import GLOM

model = GLOM(
    dim = 512,         # dimension
    levels = 6,        # number of levels
    image_size = 224,  # image size
    patch_size = 14    # patch size
)

img = torch.randn(1, 3, 224, 224)
noised_img = img + torch.randn_like(img)

all_levels = model(noised_img, return_all = True)

patches_to_images = nn.Sequential(
    nn.Linear(512, 14 * 14 * 3),
    Rearrange('b (h w) (p1 p2 c) -> b c (h p1) (w p2)', p1 = 14, p2 = 14, h = (224 // 14))
)

top_level = all_levels[7, :, :, -1]  # get the top level embeddings after iteration 6
recon_img = patches_to_images(top_level)

# do self-supervised learning by denoising

loss = F.mse_loss(img, recon_img)
loss.backward()

You can pass in the state of the column and levels back into the model to continue where you left off (perhaps if you are processing consecutive frames of a slow video, as mentioned in the paper)

import torch
from pyglom import GLOM

model = GLOM(
    dim = 512,
    levels = 6,
    image_size = 224,
    patch_size = 14
)

img1 = torch.randn(1, 3, 224, 224)
img2 = torch.randn(1, 3, 224, 224)
img3 = torch.randn(1, 3, 224, 224)

levels1 = model(img1, iters = 12)                   # image 1 for 12 iterations
levels2 = model(img2, levels = levels1, iters = 10) # image 2 for 10 iteratoins
levels3 = model(img3, levels = levels2, iters = 6)  # image 3 for 6 iterations

2 - 2. PyTorch-Lightning version

The pyglom also provides the GLOM model that is implemented with PyTorch-Lightning.

from torchvision.datasets import MNIST
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import os
from pytorch_lightning.callbacks import ModelCheckpoint


from pyglom.glom import LightningGLOM


dataset = MNIST(os.getcwd(), download=True, transform=transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor()
]))
train, val = random_split(dataset, [55000, 5000])

glom = LightningGLOM(
    dim=256,         # dimension
    levels=6,        # number of levels
    image_size=256,  # image size
    patch_size=16,   # patch size
    img_channels=1
)

gpus = torch.cuda.device_count()
trainer = pl.Trainer(gpus=gpus, max_epochs=5)
trainer.fit(glom, DataLoader(train, batch_size=8, num_workers=2), DataLoader(val, batch_size=8, num_workers=2))

3. ToDo

  • contrastive / consistency regularization of top-ish levels

4. Citations

@misc{hinton2021represent,
    title   = {How to represent part-whole hierarchies in a neural network}, 
    author  = {Geoffrey Hinton},
    year    = {2021},
    eprint  = {2102.12627},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
You might also like...
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Releases(0.0.3)
Owner
Yeonwoo Sung
2020-09-21 ~ 2022-06-20 RoK (Korea) Air Force
Yeonwoo Sung
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

35 Jan 03, 2023
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022