PyTorch implementation of GLOM

Overview

GLOM

PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attention (consensus between columns).

1. Overview

An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset.

2. Usage

2 - 1. PyTorch version

import torch
from pyglom import GLOM

model = GLOM(
    dim = 512,         # dimension
    levels = 6,        # number of levels
    image_size = 224,  # image size
    patch_size = 14    # patch size
)

img = torch.randn(1, 3, 224, 224)
levels = model(img, iters = 12) # (1, 256, 6, 512) - (batch - patches - levels - dimension)

Pass the return_all = True keyword argument on forward, and you will be returned all the column and level states per iteration, (including the initial state, number of iterations + 1). You can then use this to attach any losses to any level outputs at any time step.

It also gives you access to all the level data across iterations for clustering, from which one can inspect for the theorized islands in the paper.

import torch
from pyglom import GLOM

model = GLOM(
    dim = 512,         # dimension
    levels = 6,        # number of levels
    image_size = 224,  # image size
    patch_size = 14    # patch size
)

img = torch.randn(1, 3, 224, 224)
all_levels = model(img, iters = 12, return_all = True) # (13, 1, 256, 6, 512) - (time, batch, patches, levels, dimension)

# get the top level outputs after iteration 6
top_level_output = all_levels[7, :, :, -1] # (1, 256, 512) - (batch, patches, dimension)

Denoising self-supervised learning for encouraging emergence, as described by Hinton

import torch
import torch.nn.functional as F
from torch import nn
from einops.layers.torch import Rearrange

from pyglom import GLOM

model = GLOM(
    dim = 512,         # dimension
    levels = 6,        # number of levels
    image_size = 224,  # image size
    patch_size = 14    # patch size
)

img = torch.randn(1, 3, 224, 224)
noised_img = img + torch.randn_like(img)

all_levels = model(noised_img, return_all = True)

patches_to_images = nn.Sequential(
    nn.Linear(512, 14 * 14 * 3),
    Rearrange('b (h w) (p1 p2 c) -> b c (h p1) (w p2)', p1 = 14, p2 = 14, h = (224 // 14))
)

top_level = all_levels[7, :, :, -1]  # get the top level embeddings after iteration 6
recon_img = patches_to_images(top_level)

# do self-supervised learning by denoising

loss = F.mse_loss(img, recon_img)
loss.backward()

You can pass in the state of the column and levels back into the model to continue where you left off (perhaps if you are processing consecutive frames of a slow video, as mentioned in the paper)

import torch
from pyglom import GLOM

model = GLOM(
    dim = 512,
    levels = 6,
    image_size = 224,
    patch_size = 14
)

img1 = torch.randn(1, 3, 224, 224)
img2 = torch.randn(1, 3, 224, 224)
img3 = torch.randn(1, 3, 224, 224)

levels1 = model(img1, iters = 12)                   # image 1 for 12 iterations
levels2 = model(img2, levels = levels1, iters = 10) # image 2 for 10 iteratoins
levels3 = model(img3, levels = levels2, iters = 6)  # image 3 for 6 iterations

2 - 2. PyTorch-Lightning version

The pyglom also provides the GLOM model that is implemented with PyTorch-Lightning.

from torchvision.datasets import MNIST
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import os
from pytorch_lightning.callbacks import ModelCheckpoint


from pyglom.glom import LightningGLOM


dataset = MNIST(os.getcwd(), download=True, transform=transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor()
]))
train, val = random_split(dataset, [55000, 5000])

glom = LightningGLOM(
    dim=256,         # dimension
    levels=6,        # number of levels
    image_size=256,  # image size
    patch_size=16,   # patch size
    img_channels=1
)

gpus = torch.cuda.device_count()
trainer = pl.Trainer(gpus=gpus, max_epochs=5)
trainer.fit(glom, DataLoader(train, batch_size=8, num_workers=2), DataLoader(val, batch_size=8, num_workers=2))

3. ToDo

  • contrastive / consistency regularization of top-ish levels

4. Citations

@misc{hinton2021represent,
    title   = {How to represent part-whole hierarchies in a neural network}, 
    author  = {Geoffrey Hinton},
    year    = {2021},
    eprint  = {2102.12627},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
You might also like...
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Releases(0.0.3)
Owner
Yeonwoo Sung
2020-09-21 ~ 2022-06-20 RoK (Korea) Air Force
Yeonwoo Sung
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021
Keras Realtime Multi-Person Pose Estimation - Keras version of Realtime Multi-Person Pose Estimation project

This repository has become incompatible with the latest and recommended version of Tensorflow 2.0 Instead of refactoring this code painfully, I create

M Faber 769 Dec 08, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta

Han Zhang 1.8k Dec 21, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022