Tools for mathematical optimization region

Overview

README.md

中文博客主页:https://blog.csdn.net/linjing_zyq

pip install optimtool

1. 无约束优化算法性能对比

前五个参数完全一致,其中第四个参数是绘图接口,默认绘制单个算法的迭代过程;第五个参数是输出函数迭代值接口,默认为不输出。

method:用于传递线搜索方式

  • from optimtool.unconstrain import gradient_descent
方法 函数参数 调用示例
解方程得到精确解法(solve) solve(funcs, args, x_0, draw=True, output_f=False, epsilon=1e-10, k=0) gradient_descent.solve(funcs, args, x_0)
基于Grippo非单调线搜索的梯度下降法 barzilar_borwein(funcs, args, x_0, draw=True, output_f=False, method="grippo", M=20, c1=0.6, beta=0.6, alpha=1, epsilon=1e-10, k=0) gradient_descent.barzilar_borwein(funcs, args, x_0, method="grippo")
基于ZhangHanger非单调线搜索的梯度下降法 barzilar_borwein(funcs, args, x_0, draw=True, output_f=False, method="ZhangHanger", M=20, c1=0.6, beta=0.6, alpha=1, epsilon=1e-10, k=0) gradient_descent.barzilar_borwein(funcs, args, x_0, method="ZhangHanger")
基于最速下降法的梯度下降法 steepest(funcs, args, x_0, draw=True, output_f=False, method="wolfe", epsilon=1e-10, k=0) gradient_descent.steepest(funcs, args, x_0)
  • from optimtool.unconstrain import newton
方法 函数参数 调用示例
经典牛顿法 classic(funcs, args, x_0, draw=True, output_f=False, epsilon=1e-10, k=0) newton.classic(funcs, args, x_0)
基于armijo线搜索方法的修正牛顿法 modified(funcs, args, x_0, draw=True, output_f=False, method="armijo", m=20, epsilon=1e-10, k=0) newton.modified(funcs, args, x_0, method="armijo")
基于goldstein线搜索方法的修正牛顿法 modified(funcs, args, x_0, draw=True, output_f=False, method="goldstein", m=20, epsilon=1e-10, k=0) newton.modified(funcs, args, x_0, method="goldstein")
基于wolfe线搜索方法的修正牛顿法 modified(funcs, args, x_0, draw=True, output_f=False, method="wolfe", m=20, epsilon=1e-10, k=0) newton.modified(funcs, args, x_0, method="wolfe")
基于armijo线搜索方法的非精确牛顿法 CG(funcs, args, x_0, draw=True, output_f=False, method="armijo", epsilon=1e-6, k=0) newton.CG(funcs, args, x_0, method="armijo")
基于goldstein线搜索方法的非精确牛顿法 CG(funcs, args, x_0, draw=True, output_f=False, method="goldstein", epsilon=1e-6, k=0) newton.CG(funcs, args, x_0, method="goldstein")
基于wolfe线搜索方法的非精确牛顿法 CG(funcs, args, x_0, draw=True, output_f=False, method="wolfe", epsilon=1e-6, k=0) newton.CG(funcs, args, x_0, method="wolfe")
  • from optimtool.unconstrain import newton_quasi
方法 函数参数 调用示例
基于BFGS方法更新海瑟矩阵的拟牛顿法 bfgs(funcs, args, x_0, draw=True, output_f=False, method="wolfe", m=20, epsilon=1e-10, k=0) newton_quasi.bfgs(funcs, args, x_0)
基于DFP方法更新海瑟矩阵的拟牛顿法 dfp(funcs, args, x_0, draw=True, output_f=False, method="wolfe", m=20, epsilon=1e-4, k=0) newton_quasi.dfp(funcs, args, x_0)
基于有限内存BFGS方法更新海瑟矩阵的拟牛顿法 L_BFGS(funcs, args, x_0, draw=True, output_f=False, method="wolfe", m=6, epsilon=1e-10, k=0) newton_quasi.L_BFGS(funcs, args, x_0)
  • from optimtool.unconstrain import trust_region
方法 函数参数 调用示例
基于截断共轭梯度法的信赖域算法 steihaug_CG(funcs, args, x_0, draw=True, output_f=False, m=100, r0=1, rmax=2, eta=0.2, p1=0.4, p2=0.6, gamma1=0.5, gamma2=1.5, epsilon=1e-6, k=0) trust_region.steihaug_CG(funcs, args, x_0)
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

f, x1, x2, x3, x4 = sp.symbols("f x1 x2 x3 x4")
f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
funcs = sp.Matrix([f])
args = sp.Matrix([x1, x2, x3, x4])
x_0 = (1, 2, 3, 4)

# 无约束优化测试函数性能对比
f_list = []
title = ["gradient_descent_barzilar_borwein", "newton_CG", "newton_quasi_L_BFGS", "trust_region_steihaug_CG"]
colorlist = ["maroon", "teal", "slateblue", "orange"]
_, _, f = oo.unconstrain.gradient_descent.barzilar_borwein(funcs, args, x_0, False, True)
f_list.append(f)
_, _, f = oo.unconstrain.newton.CG(funcs, args, x_0, False, True)
f_list.append(f)
_, _, f = oo.unconstrain.newton_quasi.L_BFGS(funcs, args, x_0, False, True)
f_list.append(f)
_, _, f = oo.unconstrain.trust_region.steihaug_CG(funcs, args, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

2. 非线性最小二乘问题

  • from optimtool.unconstrain import nonlinear_least_square

method:用于传递线搜索方法

方法 函数参数 调用示例
基于高斯牛顿法的非线性最小二乘问题解法 gauss_newton(funcr, args, x_0, draw=True, output_f=False, method="wolfe", epsilon=1e-10, k=0) nonlinear_least_square.gauss_newton(funcr, args, x_0)
基于levenberg_marquardt的非线性最小二乘问题解法 levenberg_marquardt(funcr, args, x_0, draw=True, output_f=False, m=100, lamk=1, eta=0.2, p1=0.4, p2=0.9, gamma1=0.7, gamma2=1.3, epsilon=1e-10, k=0) nonlinear_least_square.levenberg_marquardt(funcr, args, x_0)
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

r1, r2, x1, x2 = sp.symbols("r1 r2 x1 x2")
r1 = x1**3 - 2*x2**2 - 1
r2 = 2*x1 + x2 - 2
funcr = sp.Matrix([r1, r2])
args = sp.Matrix([x1, x2])
x_0 = (2, 2)

f_list = []
title = ["gauss_newton", "levenberg_marquardt"]
colorlist = ["maroon", "teal"]
_, _, f = oo.unconstrain.nonlinear_least_square.gauss_newton(funcr, args, x_0, False, True) # 第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.unconstrain.nonlinear_least_square.levenberg_marquardt(funcr, args, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

3. 等式约束优化测试

  • from optimtool.constrain import equal

无约束内核默认采用wolfe线搜索方法

方法 函数参数 调用示例
二次罚函数法 penalty_quadratic(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", sigma=10, p=2, epsilon=1e-4, k=0) equal.penalty_quadratic(funcs, args, cons, x_0)
增广拉格朗日法 lagrange_augmented(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", lamk=6, sigma=10, p=2, etak=1e-4, epsilon=1e-6, k=0) equal.lagrange_augmented(funcs, args, cons, x_0)
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

f, x1, x2 = sp.symbols("f x1 x2")
f = x1 + np.sqrt(3) * x2
c1 = x1**2 + x2**2 - 1
funcs = sp.Matrix([f])
cons = sp.Matrix([c1])
args = sp.Matrix([x1, x2])
x_0 = (-1, -1)

f_list = []
title = ["penalty_quadratic", "lagrange_augmented"]
colorlist = ["maroon", "teal"]
_, _, f = oo.constrain.equal.penalty_quadratic(funcs, args, cons, x_0, False, True) # 第四个参数控制单个算法不显示迭代图,第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.constrain.equal.lagrange_augmented(funcs, args, cons, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

4. 不等式约束优化测试

  • from optimtool.constrain import unequal

无约束内核默认采用wolfe线搜索方法

方法 函数参数 调用示例
二次罚函数法 penalty_quadratic(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", sigma=1, p=0.4, epsilon=1e-10, k=0) unequal.penalty_quadratic(funcs, args, cons, x_0)
内点(分式)罚函数法 penalty_interior_fraction(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", sigma=12, p=0.6, epsilon=1e-6, k=0) unequal.penalty_interior_fraction(funcs, args, cons, x_0)
拉格朗日法(本质上为不存在等式约束) lagrange_augmented(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", muk=10, sigma=8, alpha=0.2, beta=0.7, p=2, eta=1e-1, epsilon=1e-4, k=0) unequal.lagrange_augmented(funcs, args, cons, x_0)
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

f, x1, x2 = sp.symbols("f x1 x2")
f = x1**2 + (x2 - 2)**2
c1 = 1 - x1
c2 = 2 - x2
funcs = sp.Matrix([f])
cons = sp.Matrix([c1, c2])
args = sp.Matrix([x1, x2])
x_0 = (2, 3)

f_list = []
title = ["penalty_quadratic", "penalty_interior_fraction"]
colorlist = ["maroon", "teal"]
_, _, f = oo.constrain.unequal.penalty_quadratic(funcs, args, cons, x_0, False, True, method="newton", sigma=10, epsilon=1e-6) # 第四个参数控制单个算法不显示迭代图,第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.constrain.unequal.penalty_interior_fraction(funcs, args, cons, x_0, False, True, method="newton")
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

单独测试拉格朗日方法

# 导入符号运算的包
import sympy as sp

# 导入约束优化
import optimtool as oo

# 构造函数
f1 = sp.symbols("f1")
x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4")
f1 = x1**2 + x2**2 + 2*x3**3 + x4**2 - 5*x1 - 5*x2 - 21*x3 + 7*x4
c1 = 8 - x1 + x2 - x3 + x4 - x1**2 - x2**2 - x3**2 - x4**2
c2 = 10 + x1 + x4 - x1**2 - 2*x2**2 - x3**2 - 2*x4**2
c3 = 5 - 2*x1 + x2 + x4 - 2*x1**2 - x2**2 - x3**2
cons_unequal1 = sp.Matrix([c1, c2, c3])
funcs1 = sp.Matrix([f1])
args1 = sp.Matrix([x1, x2, x3, x4])
x_1 = (0, 0, 0, 0)

x_0, _, f = oo.constrain.unequal.lagrange_augmented(funcs1, args1, cons_unequal1, x_1, output_f=True, method="trust_region", sigma=1, muk=1, p=1.2)
for i in range(len(x_0)):
     x_0[i] = round(x_0[i], 2)
print("\n最终收敛点:", x_0, "\n目标函数值:", f[-1])

result

最终收敛点: [ 2.5   2.5   1.87 -3.5 ] 
目标函数值: -50.94151192711454

5. 混合等式约束测试

  • from optimtool.constrain import mixequal

无约束内核默认采用wolfe线搜索方法

方法 函数参数 调用示例
二次罚函数法 penalty_quadratic(funcs, args, cons_equal, cons_unequal, x_0, draw=True, output_f=False, method="gradient_descent", sigma=1, p=0.6, epsilon=1e-10, k=0) mixequal.penalty_quadratic(funcs, args, cons_equal, cons_unequal, x_0)
L1罚函数法 penalty_L1(funcs, args, cons_equal, cons_unequal, x_0, draw=True, output_f=False, method="gradient_descent", sigma=1, p=0.6, epsilon=1e-10, k=0) mixequal.penalty_L1(funcs, args, cons_equal, cons_unequal, x_0)
增广拉格朗日函数法 lagrange_augmented(funcs, args, cons_equal, cons_unequal, x_0, draw=True, output_f=False, method="gradient_descent", lamk=6, muk=10, sigma=8, alpha=0.5, beta=0.7, p=2, eta=1e-3, epsilon=1e-4, k=0) mixequal.lagrange_augmented(funcs, args, cons_equal, cons_unequal, x_0)
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

f, x1, x2 = sp.symbols("f x1 x2")
f = (x1 - 2)**2 + (x2 - 1)**2
c1 = x1 - 2*x2
c2 = 0.25*x1**2 - x2**2 - 1
funcs = sp.Matrix([f])
cons_equal = sp.Matrix([c1])
cons_unequal = sp.Matrix([c2])
args = sp.Matrix([x1, x2])
x_0 = (0.5, 1)

f_list = []
title = ["penalty_quadratic", "penalty_L1", "lagrange_augmented"]
colorlist = ["maroon", "teal", "orange"]
_, _, f = oo.constrain.mixequal.penalty_quadratic(funcs, args, cons_equal, cons_unequal, x_0, False, True) # 第四个参数控制单个算法不显示迭代图,第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.constrain.mixequal.penalty_L1(funcs, args, cons_equal, cons_unequal, x_0, False, True)
f_list.append(f)
_, _, f = oo.constrain.mixequal.lagrange_augmented(funcs, args, cons_equal, cons_unequal, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

6. Lasso问题测试

  • from optimtool.example import Lasso
方法 函数参数 调用示例
梯度下降法 gradient_descent(A, b, mu, args, x_0, draw=True, output_f=False, delta=10, alp=1e-3, epsilon=1e-2, k=0) Lasso.gradient_descent(A, b, mu, args, x_0,)
次梯度算法 subgradient(A, b, mu, args, x_0, draw=True, output_f=False, alphak=2e-2, epsilon=1e-3, k=0) Lasso.subgradient(A, b, mu, args, x_0,)
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

import scipy.sparse as ss
f, A, b, mu = sp.symbols("f A b mu")
x = sp.symbols('x1:9')
m = 4
n = 8
u = (ss.rand(n, 1, 0.1)).toarray()
A = np.random.randn(m, n)
b = A.dot(u)
mu = 1e-2
args = sp.Matrix(x)
x_0 = tuple([1 for i in range(8)])

f_list = []
title = ["gradient_descent", "subgradient"]
colorlist = ["maroon", "teal"]
_, _, f = oo.example.Lasso.gradient_descent(A, b, mu, args, x_0, False, True, epsilon=1e-4)# 第四个参数控制单个算法不显示迭代图,第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.example.Lasso.subgradient(A, b, mu, args, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

7. WanYuan问题测试

  • from optimtool.example import WanYuan
方法 函数参数 调用示例
构造7个残差函数并采用高斯牛顿法 gauss_newton(m, n, a, b, c, x3, y3, x_0, draw=False, eps=1e-10) WanYuan.gauss_newton(1, 2, 0.2, -1.4, 2.2, 2**(1/2), 0, (0, -1, -2.5, -0.5, 2.5, -0.05), draw=True)

问题描述

给定直线方程的斜率($m$)与截距($n$),给定一元二次方程的二次项系数($a$)、一次项系数($b$)、常数($c$),给定一个过定点的圆($x_3$,$y_3$​​),要求这个过定点的圆与直线($x_1$,$y_1$)和抛物线($x_2$,$y_2$)相切的切点以及该圆的圆心($x_0$,$y_0$)。

code

# 导包
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

# 构造数据
m = 1
n = 2
a = 0.2
b = -1.4
c = 2.2
x3 = 2*(1/2)
y3 = 0
x_0 = (0, -1, -2.5, -0.5, 2.5, -0.05)

# 训练
oo.example.WanYuan.gauss_newton(1, 2, 0.2, -1.4, 2.2, 2**(1/2), 0, (0, -1, -2.5, -0.5, 2.5, -0.05), draw=True)
You might also like...
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

A single Python file with some tools for visualizing machine learning in the terminal.
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

A collection of Scikit-Learn compatible time series transformers and tools.
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Tools for Optuna, MLflow and the integration of both.
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

Comments
  • Minimize the Amount of Guided Packages

    Minimize the Amount of Guided Packages

    Is it necessary to reconstruct the matrix operation system of numpy and the symbolic algebra operation system of sympy in order to reduce the amount of dependent packets in the process of guilding packets.

    opened by zzqwdwd 1
Releases(v1.5)
  • v1.5(Nov 10, 2022)

    This version reduces the memory pressure caused by typing compared to v1.4.

    import optimtool as oo
    x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4") # Declare symbolic variables
    f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
    oo.unconstrain.gradient_descent.barzilar_borwein(f, [x1, x2, x3, x4], (1, 2, 3, 4)) # funcs, args, x_0
    
    Source code(tar.gz)
    Source code(zip)
  • v1.4(Nov 8, 2022)

    import optimtool as oo
    x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4") # Declare symbolic variables
    f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
    oo.unconstrain.gradient_descent.barzilar_borwein(f, [x1, x2, x3, x4], (1, 2, 3, 4)) # funcs, args, x_0
    

    Use FuncArray, ArgArray, PointArray, IterPointType, OutputType in typing, and delete functions/ folder. I use many means to accelerate the method, I can't enumerate them here.

    Source code(tar.gz)
    Source code(zip)
  • v1.3(Apr 25, 2022)

    In v2.3.4, We call a method as follows:

    import optimtool as oo
    x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4")
    f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
    funcs = sp.Matrix([f])
    args = sp.Matrix([x1, x2, x3, x4])
    x_0 = (1, 2, 3, 4)
    oo.unconstrain.gradient_descent.barzilar_borwein(funcs, args, x_0)
    

    But in v2.3.5, We now call a method as follows: (It reduces the trouble of constructing data externally.)

    import optimtool as oo
    x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4") # Declare symbolic variables
    f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
    oo.unconstrain.gradient_descent.barzilar_borwein(f, [x1, x2, x3, x4], (1, 2, 3, 4)) # funcs, args, x_0
    # funcs(args) can be list, tuple, sp.Matrix
    

    Our function parameter input method is similar to matlab, and supports more methods than matlab.

    Source code(tar.gz)
    Source code(zip)
Reproducibility and Replicability of Web Measurement Studies

Reproducibility and Replicability of Web Measurement Studies This repository holds additional material to the paper "Reproducibility and Replicability

6 Dec 31, 2022
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022
Management of exclusive GPU access for distributed machine learning workloads

TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting

Paweł Rościszewski 131 Dec 12, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
AP1 Transcription Factor Binding Site Prediction

A machine learning project that predicted binding sites of AP1 transcription factor, using ChIP-Seq data and local DNA shape information.

1 Jan 21, 2022
About Solve CTF offline disconnection problem - based on python3's small crawler

About Solve CTF offline disconnection problem - based on python3's small crawler, support keyword search and local map bed establishment, currently support Jianshu, xianzhi,anquanke,freebuf,seebug

天河 32 Oct 25, 2022
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
Machine Learning University: Accelerated Natural Language Processing Class

Machine Learning University: Accelerated Natural Language Processing Class This repository contains slides, notebooks and datasets for the Machine Lea

AWS Samples 2k Jan 01, 2023
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
Traingenerator 🧙 A web app to generate template code for machine learning ✨

Traingenerator 🧙 A web app to generate template code for machine learning ✨ 🎉 Traingenerator is now live! 🎉

Johannes Rieke 1.2k Jan 07, 2023
Scikit-learn compatible wrapper of the Random Bits Forest program written by (Wang et al., 2016)

sklearn-compatible Random Bits Forest Scikit-learn compatible wrapper of the Random Bits Forest program written by Wang et al., 2016, available as a b

Tamas Madl 8 Jul 24, 2021
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.

Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui

Renan Barbosa 1 Jan 10, 2022
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022