Apache (Py)Spark type annotations (stub files).

Overview

PySpark Stubs

Build Status PyPI version Conda Forge version

A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints.

Tests and configuration files have been originally contributed to the Typeshed project. Please refer to its contributors list and license for details.

Important

This project has been merged with the main Apache Spark repository (SPARK-32714). All further development for Spark 3.1 and onwards will be continued there.

For Spark 2.4 and 3.0, development of this package will be continued, until their official deprecation.

  • If your problem is specific to Spark 2.3 and 3.0 feel free to create an issue or open pull requests here.
  • Otherwise, please check the official Spark JIRA and contributing guidelines. If you create a JIRA ticket or Spark PR related to type hints, please ping me with [~zero323] or @zero323 respectively. Thanks in advance.

Motivation

  • Static error detection (see SPARK-20631)

    SPARK-20631

  • Improved autocompletion.

    Syntax completion

Installation and usage

Please note that the guidelines for distribution of type information is still work in progress (PEP 561 - Distributing and Packaging Type Information). Currently installation script overlays existing Spark installations (pyi stub files are copied next to their py counterparts in the PySpark installation directory). If this approach is not acceptable you can add stub files to the search path manually.

According to PEP 484:

Third-party stub packages can use any location for stub storage. Type checkers should search for them using PYTHONPATH.

Moreover:

Third-party stub packages can use any location for stub storage. Type checkers should search for them using PYTHONPATH. A default fallback directory that is always checked is shared/typehints/python3.5/ (or 3.6, etc.)

Please check usage before proceeding.

The package is available on PYPI:

pip install pyspark-stubs

and conda-forge:

conda install -c conda-forge pyspark-stubs

Depending on your environment you might also need a type checker, like Mypy or Pytype [1], and autocompletion tool, like Jedi.

Editor Type checking Autocompletion Notes
Atom [2] [3] Through plugins.
IPython / Jupyter Notebook [4]  
PyCharm  
PyDev [5] ?  
VIM / Neovim [6] [7] Through plugins.
Visual Studio Code [8] [9] Completion with plugin
Environment independent / other editors [10] [11] Through Mypy and Jedi.

This package is tested against MyPy development branch and in rare cases (primarily important upstrean bugfixes), is not compatible with the preceding MyPy release.

PySpark Version Compatibility

Package versions follow PySpark versions with exception to maintenance releases - i.e. pyspark-stubs==2.3.0 should be compatible with pyspark>=2.3.0,<2.4.0. Maintenance releases (post1, post2, ..., postN) are reserved for internal annotations updates.

API Coverage:

As of release 2.4.0 most of the public API is covered. For details please check API coverage document.

See also

Disclaimer

Apache Spark, Spark, PySpark, Apache, and the Spark logo are trademarks of The Apache Software Foundation. This project is not owned, endorsed, or sponsored by The Apache Software Foundation.

Footnotes

[1] Not supported or tested.
[2] Requires atom-mypy or equivalent.
[3] Requires autocomplete-python-jedi or equivalent.
[4] It is possible to use magics to type check directly in the notebook. In general though, you'll have to export whole notebook to .py file and run type checker on the result.
[5] Requires PyDev 7.0.3 or later.
[6] TODO Using vim-mypy, syntastic or Neomake.
[7] With jedi-vim.
[8] With Mypy linter.
[9] With Python extension for Visual Studio Code.
[10] Just use your favorite checker directly, optionally combined with tool like entr.
[11] See Jedi editor plugins list.
Comments
  • Fix 2-argument math functions

    Fix 2-argument math functions

    Fixes the binary math functions:

    • atan2 and hypot take two arguments, not one
    • pow supports taking a literal numeric value as its second argument in addition to a Column.
    bug 3.0 2.3 2.4 
    opened by harpaj 10
  • Jedi doesn't work with MLReaders

    Jedi doesn't work with MLReaders

    It seems like there is some problem with Jedi compatibility. Some components seem to work pretty well. For example DataFrame without stubs:

    In [1]: import jedi                                                                                                                                                                                                
    
    In [2]: from pyspark.sql import SparkSession                                                                                                                                                                       
    
    In [3]: jedi.Interpreter("SparkSession.builder.getOrCreate().createDataFrame([]).", [globals()]).completions()                                                                                                     
    ---------------------------------------------------------------------------
    AttributeError   
    ...
    AttributeError: 'ModuleContext' object has no attribute 'py__path__'
    

    and with stubs:

    In [1]: from pyspark.sql import SparkSession                                                                                                                                                                       
    
    In [2]: import jedi                                                                                                                                                                                                
    
    In [3]: jedi.Interpreter("SparkSession.builder.getOrCreate().createDataFrame([]).", [globals()]).completions()                                                                                                     
    Out[3]: 
    [<Completion: agg>,
     <Completion: alias>,
     <Completion: approxQuantile>,
     <Completion: cache>,
     <Completion: checkpoint>,
     <Completion: coalesce>,
     <Completion: collect>,
     <Completion: colRegex>,
     <Completion: columns>,
     <Completion: corr>,
     <Completion: count>,
     <Completion: cov>,
    ...
     <Completion: __str__>]
    

    So far so good. However, if take for example LinearRegressionModel.load things don't work so well. Without stubs provides no suggestions

    In [1]: import jedi                                                                                                                                                                                                
    
    In [2]: from pyspark.ml.regression import LinearRegressionModel                                                                                                                                                    
    
    In [3]: jedi.Interpreter("LinearRegressionModel.load('foo').", [globals()]).completions()                                                                                                                          
    Out[3]: []
    

    but one provided with stubs

    In [1]: import jedi                                                                                                                                                                                                
    
    In [2]: from pyspark.ml.regression import LinearRegressionModel                                                                                                                                                    
    
    In [3]: jedi.Interpreter("LinearRegressionModel.load('foo').", [globals()]).completions()                                                                                                                          
    Out[3]: 
    [<Completion: load>,
     <Completion: read>,
     <Completion: __annotations__>,
     <Completion: __class__>,
     <Completion: __delattr__>,
     <Completion: __dict__>,
     <Completion: __dir__>,
     <Completion: __doc__>,
     <Completion: __eq__>,
     <Completion: __format__>,
     <Completion: __getattribute__>,
     <Completion: __hash__>,
     <Completion: __init__>,
     <Completion: __init_subclass__>,
     <Completion: __module__>,
     <Completion: __ne__>,
     <Completion: __new__>,
     <Completion: __reduce__>,
     <Completion: __reduce_ex__>,
     <Completion: __repr__>,
     <Completion: __setattr__>,
     <Completion: __sizeof__>,
     <Completion: __slots__>,
    

    don't make much sense. If model is fitted:

    In [4]: from pyspark.ml.regression import LinearRegression                                                                                                                                                         
    
    In [5]: jedi.Interpreter("LinearRegression().fit(...).", [globals()]).completions()                                                                                                                                
    Out[5]: 
    [<Completion: aggregationDepth>,
     <Completion: append>,
     <Completion: clear>,
     <Completion: coefficients>,
     <Completion: copy>,
     <Completion: count>,
    ....
     <Completion: __str__>]
    

    Model which is explicitly annotated works fine, so it seems like there is something in MLReader or one of the sub-classes that causes a failure.

    We already have data tests for this (as well as some test cases from apache/spark examples, and mypy seems to be fine with this.

    Since LinearRegression.fit works fine (and some toy tests confirm that), Generics are not sufficient to reproduce the problem. So it seems like type parameter is not processed correctly on the path:

    Tested with:

    • jedi==0.15.2 and jedi==0.16.0 (0c56aa4).
    • pyspark-stubs==3.0.0.dev5
    • pyspark==3.0.0.dev0 (afe70b3)
    opened by zero323 7
  • DataFrameReader.load parameters incorrectly expected all to be strings

    DataFrameReader.load parameters incorrectly expected all to be strings

    Using 2.4.0.post6

    spark.read.load(folders, inferSchema=True, header=False)
    

    mypy reports Expected type 'str', got 'bool' instead for both inferSchema and header.

    Looks like the issue is in third_party/3/pyspark/sql/readwriter.pyi Line 23 where in the definition for load() we have **options: str. For csv suppport this needs to be **options: Optional[Union[bool, str, int]] but to handle the general case it probably needs to be **options: Any.

    enhancement 
    opened by ghost 7
  • Added contains to Column

    Added contains to Column

    The contains method is missing from the stubs causing mypy to raise error: "Column" not callable.

    This PR adds the typehints to 2.4 specifically (the version we are using), but it should probably also be added to the other versions.

    opened by Braamling 6
  • #394: Use Union[List[Column], List[str]] for Select

    #394: Use Union[List[Column], List[str]] for Select

    Passing a List[str] to select raises a mypy warning, similar for List[Column]. We change the type from List[Union[Column, str]] to Union[List[Column], List[str]].

    Fixes #394 .

    opened by jhereth 5
  • Update distinct() and repartition() definitions

    Update distinct() and repartition() definitions

    Update repartition functions to allow for Col in numPartitions parameter.

    Reference

    numPartitions – can be an int to specify the target number of partitions or a Column.
        If it is a Column, it will be used as the first partitioning column.
        If not specified, the default number of partitions is used.
    

    Also add stub for DataFrame#distinct()

    opened by zpencerq 5
  • Allow `Column` type for timezone argument in pyspark.sql.functions

    Allow `Column` type for timezone argument in pyspark.sql.functions

    In the functions here: https://github.com/zero323/pyspark-stubs/blob/3c4684a224c1be4eea4577e475f8bb4d045edddd/third_party/3/pyspark/sql/functions.pyi#L100-L101 we currently have tz: str but this can also be specified as a Column

    Example:

    >>> from pyspark.sql import functions
    >>> df = spark.sql("SELECT CAST(0 AS TIMESTAMP) AS timestamp, 'Asia/Tokyo' AS tz")
    >>> df.select(functions.from_utc_timestamp(df.timestamp, df.tz)).collect()
    [Row(from_utc_timestamp(timestamp, tz)=datetime.datetime(1970, 1, 1, 18, 0))]
    

    I think this could be expanded to tz: ColumnOrName?

    3.0 2.4 3.1 
    opened by charlietsai 4
  • Overload DataFrame.drop: sequences must be *str

    Overload DataFrame.drop: sequences must be *str

    The method DataFrame.drop expects either 1 Column, or 1 str, or an iterable of strings. This is only type checked inside the function though.

    Currently the type hints (and the actual API) allow to pass multiple Columns but it does result in a runtime error. Personally, I'd like to have that caught earlier. But as this might be getting too close to the internals of the functions, I’d like to hear your opinion on whether or not the type hints should “look inside” to aid development.

    opened by oliverw1 4
  • provide overloaded methods for sample

    provide overloaded methods for sample

    The fraction is a required argument to the sample method. Anytime someone calls df.sample(.01) this is met in mypy with

    Argument 1 to "sample" of "DataFrame" has incompatible type "float"; expected "Optional[bool]"

    In the Pyspark API, the three arguments are in fact pure keyword arguments that are handled later to ensure fraction must be given. This is probably done to keep consistent with the Scala API.

    By overloading the methods, the issue is resolved.

    opened by oliverw1 4
  • Allow non-string load/save parameters

    Allow non-string load/save parameters

    Resolves #273

    Additional parameters to DataFrameReader.load() and DataFrameWriter.save()/.saveTable() are passed to the file-type specific reader or writer types. These parameters can be of any type.

    opened by mark-oppenheim 4
  • Fix return type for DataFrame.groupBy / cube / rollup

    Fix return type for DataFrame.groupBy / cube / rollup

    2.3 has these data types and I was erroneously gettting errors for them.

    Note this is a port of e2d225f06ff36fcbf79e2123f1c18f380e862728

    I tried a cherry-pick but it had some issues (not sure why)

    opened by dangercrow 4
Releases(3.0.0.post3)
Owner
Maciej
Just a dog on the Internet. I would love to tell you more, but then, of course, I'd have to erase your memory. A30CEF0C31A501EC
Maciej
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022
Nevergrad - A gradient-free optimization platform

Nevergrad - A gradient-free optimization platform nevergrad is a Python 3.6+ library. It can be installed with: pip install nevergrad More installati

Meta Research 3.4k Jan 08, 2023
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
Pydantic based mock data generation

This library offers powerful mock data generation capabilities for pydantic based models. It can also be used with other libraries that use pydantic as a foundation, for example SQLModel, Beanie and

Na'aman Hirschfeld 396 Dec 28, 2022
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)

Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed

Chris Yuan 1 Feb 06, 2022
#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit 🎈 This is the official repo of #30DaysOfStreamlit — a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 02, 2023
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
An implementation of Relaxed Linear Adversarial Concept Erasure (RLACE)

Background This repository contains an implementation of Relaxed Linear Adversarial Concept Erasure (RLACE). Given a dataset X of dense representation

Shauli Ravfogel 4 Apr 13, 2022
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
A library of sklearn compatible categorical variable encoders

Categorical Encoding Methods A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques

2.1k Jan 07, 2023