An implementation of Relaxed Linear Adversarial Concept Erasure (RLACE)

Related tags

Machine LearningRLACE
Overview

Background

This repository contains an implementation of Relaxed Linear Adversarial Concept Erasure (RLACE). Given a dataset X of dense representations and labels y for some concept (e.g. gender), the method identifies a rank-k subsapce whose neutralization (suing an othogonal projection matrix) prevents linear classifiers from recovering the concept from the representations.

The method relies on a relaxed and constrained version of a minimax game between a predictor that aims to predict y and a projection matrix P that is optimized to prevent the prediction.

How to run

A simple running example is provided within rlace.py.

Parameters

The main method, solve_adv_game, receives several arguments, among them:

  • rank: the rank of the neutralized subspace. rank=1 is emperically enough to prevent linear prediction in binary classification problem.

  • epsilon: stopping criterion for the adversarial game. Stops if abs(acc - majority_acc) < epsilon.

  • optimizer_class: torch.optim optimizer

  • optimizer_params_predictor / optimizer_params_P: parameters for the optimziers of the predictor and the projection matrix, respectively.

Running example:

num_iters = 50000
rank=1
optimizer_class = torch.optim.SGD
optimizer_params_P = {"lr": 0.003, "weight_decay": 1e-4}
optimizer_params_predictor = {"lr": 0.003,"weight_decay": 1e-4}
epsilon = 0.001 # stop 0.1% from majority acc
batch_size = 256

output = solve_adv_game(X_train, y_train, X_dev, y_dev, rank=rank, device="cpu", out_iters=num_iters, optimizer_class=optimizer_class, optimizer_params_P =optimizer_params_P, optimizer_params_predictor=optimizer_params_predictor, epsilon=epsilon,batch_size=batch_size)

Optimization: Even though we run a concave-convex minimax game, which is generallly "well-behaved", optimziation with alternate SGD is still not completely straightforward, and may require some tuning of the optimizers. Accuracy is also not expected to monotonously decrease in optimization; we return the projection matrix which performed best along the entire game. In all experiments on binary classification problems, we identified a projection matrix that neutralizes a rank-1 subspace and decreases classification accuracy to near-random (50%).

Using the projection:

output that is returned from solve_adv_game is a dictionary, that contains the following keys:

  1. score: final accuracy of the predictor on the projected data.

  2. P_before_svd: the final approximate projection matrix, before SVD that guarantees it's a proper orthogonal projection matrix.

  3. P: a proper orthogonal matrix that neutralizes a rank-k subspace.

The ``clean" vectors are given by X.dot(output["P"]).

Owner
Shauli Ravfogel
Graduate student, BIU NLP lab
Shauli Ravfogel
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
XManager: A framework for managing machine learning experiments πŸ§‘β€πŸ”¬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
cuML - RAPIDS Machine Learning Library

cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t

RAPIDS 3.1k Dec 28, 2022
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
TensorFlow implementation of an arbitrary order Factorization Machine

This is a TensorFlow implementation of an arbitrary order (=2) Factorization Machine based on paper Factorization Machines with libFM. It supports: d

Mikhail Trofimov 785 Dec 21, 2022
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servΓ©n 747 Jan 05, 2023
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
onelearn: Online learning in Python

onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o

15 Nov 06, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
πŸŽ› Distributed machine learning made simple.

πŸŽ› lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started β€’ Highlight

Machine Learning Tooling 44 Nov 27, 2022
Apache (Py)Spark type annotations (stub files).

PySpark Stubs A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints. T

Maciej 114 Nov 22, 2022
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022