A single Python file with some tools for visualizing machine learning in the terminal.

Related tags

Machine Learningmlvt
Overview

Machine Learning Visualization Tools

A single Python file with some tools for visualizing machine learning in the terminal.

This demo is composed of three ideas, which are explained below. Here's how to get started:

git clone https://github.com/bwasti/mlvt.git
cd mlvt
python3 -m pip install -r requirements.txt
python3 test.py # demo above

or just copy the mlvt.py file!

mlvt.Reprint

Reprint helps with in-line animations. It works by keeping track of how much it printed so far and reprinting it when flush() is called.

You can use the with statement to hijack print statements and auto_flush=True to avoid calling flush() in a loop, like so:

print("loading!")
with mlvt.Reprint(auto_flush=True) as rp:
  for i in range(100):
    print(f"{i+1}%") # Reprint detects the loop and overwrites in-place
    time.sleep(0.02)
print("done!")

reprint.gif

or, if you'd prefer to avoid contexts, loop-detection and hijacked builtins

print("loading!")
rp = mlvt.Reprint()
for i in range(100):
  rp.print(f"{i+1}%")
  rp.flush()
  time.sleep(0.02)
print("done!")

mlvt.horiz_concat

horiz_concat concatenates multi-line strings horizontally, accounting for padding and ANSI escape sequences (for color text).

a = """
{ hello! }
          \_    
"""
b = """
 ___
|. .|
| ^ |
| o |
"""
print(mlvt.horiz_concat(a, b, padding=2))

yields


               ___
{ hello! }    |. .|
          \_  | ^ |
              | o |
              

plotille wrappers

Finally, there are a couple of small plotille wrappers that decouple updating charts and printing them. That library is great on its own, so I encourage you to check it out!

import mlvt
import numpy as np

# all charts take in width, height, color
hist = mlvt.Histogram(32, 8, color="bright_blue")
hist.update(np.random.randn(100))
print(hist)

gives us

 (Counts)  ^
8.80000000 |
7.70000000 | ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
6.60000000 | ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
5.50000000 | ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⡇⣶⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
4.40000000 | ⠀⠀⠀⠀⠀⠀⠀⠀⢰⣶⣶⠀⠀⢸⡇⣿⠀⢰⣶⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
3.30000000 | ⠀⠀⠀⠀⠀⠀⠀⣿⢸⣿⣿⣿⣿⢸⣿⣿⣿⢸⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
2.20000000 | ⠀⠀⠀⠀⠀⠀⠀⣿⣿⣿⣿⣿⣿⢸⣿⣿⣿⣿⣿⣿⣿⣿⡇⢸⣿⠀⠀⠀⢸⡇⠀⠀
1.10000000 | ⠀⠀⢀⣀⡀⣿⣀⣿⣿⣿⣿⣿⣿⣸⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⣇⣸⡇⠀⠀
         0 | ⠀⠀⢸⣿⡇⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⣿⣿⡇⠀⠀
-----------|-|---------|---------|---------|-> (X)
           | -2.124059 -0.741902 0.6402548 2.0224115
Owner
Bram Wasti
https://twitter.com/bwasti
Bram Wasti
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
We have a dataset of user performances. The project is to develop a machine learning model that will predict the salaries of baseball players.

Salary-Prediction-with-Machine-Learning 1. Business Problem Can a machine learning project be implemented to estimate the salaries of baseball players

Ayşe Nur Türkaslan 9 Oct 14, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

🎉 第二版本 🎉 (现货趋势网格) 介绍 在第一版本的基础上 趋势判断,不在固定点位开单,选择更优的开仓点位 优势: 🎉 简单易上手 安全(不用将api_secret告诉他人) 如何启动 修改app目录下的authorization文件

幸福村的码农 250 Jan 07, 2023
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
MiniTorch - a diy teaching library for machine learning engineers

This repo is the full student code for minitorch. It is designed as a single repo that can be completed part by part following the guide book. It uses

1.1k Jan 07, 2023
Apache (Py)Spark type annotations (stub files).

PySpark Stubs A collection of the Apache Spark stub files. These files were generated by stubgen and manually edited to include accurate type hints. T

Maciej 114 Nov 22, 2022
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets

Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets Datasets Used: Iris dataset,

Samrat Mitra 2 Nov 18, 2021
Extended Isolation Forest for Anomaly Detection

Table of contents Extended Isolation Forest Summary Motivation Isolation Forest Extension The Code Installation Requirements Use Citation Releases Ext

Sahand Hariri 377 Dec 18, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
Microsoft Machine Learning for Apache Spark

Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark

Microsoft Azure 3.9k Dec 30, 2022
Diabetes Prediction with Logistic Regression

Diabetes Prediction with Logistic Regression Exploratory Data Analysis Data Preprocessing Model & Prediction Model Evaluation Model Validation: Holdou

AZİZE SULTAN PALALI 2 Oct 23, 2021
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022