Python implementation of the rulefit algorithm

Overview

RuleFit

Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF)

The algorithm can be used for predicting an output vector y given an input matrix X. In the first step a tree ensemble is generated with gradient boosting. The trees are then used to form rules, where the paths to each node in each tree form one rule. A rule is a binary decision if an observation is in a given node, which is dependent on the input features that were used in the splits. The ensemble of rules together with the original input features are then being input in a L1-regularized linear model, also called Lasso, which estimates the effects of each rule on the output target but at the same time estimating many of those effects to zero.

You can use rulefit for predicting a numeric response (categorial not yet implemented). The input has to be a numpy matrix with only numeric values.

Installation

The latest version can be installed from the master branch using pip:

pip install git+git://github.com/christophM/rulefit.git

Another option is to clone the repository and install using python setup.py install or python setup.py develop.

Usage

Train your model:

import numpy as np
import pandas as pd

from rulefit import RuleFit

boston_data = pd.read_csv("boston.csv", index_col=0)

y = boston_data.medv.values
X = boston_data.drop("medv", axis=1)
features = X.columns
X = X.as_matrix()

rf = RuleFit()
rf.fit(X, y, feature_names=features)

If you want to have influence on the tree generator you can pass the generator as argument:

from sklearn.ensemble import GradientBoostingRegressor
gb = GradientBoostingRegressor(n_estimators=500, max_depth=10, learning_rate=0.01)
rf = RuleFit(gb)

rf.fit(X, y, feature_names=features)

Predict

rf.predict(X)

Inspect rules:

rules = rf.get_rules()

rules = rules[rules.coef != 0].sort_values("support", ascending=False)

print(rules)

Notes

  • In contrast to the original paper, the generated trees are always fitted with the same maximum depth. In the original implementation the maximum depth of the tree are drawn from a distribution each time
  • This implementation is in progress. If you find a bug, don't hesitate to contact me.

Changelog

All notable changes to this project will be documented here.

[v0.3] - IN PROGRESS

  • set default of exclude_zero_coef to False in get_rules():
  • syntax fix (Issue 21)

[v0.2] - 2017-11-24

  • Introduces classification for RuleFit
  • Adds scaling of variables (Friedscale)
  • Allows random size trees for creating rules

[v0.1] - 2016-06-18

  • Start changelog and versions
Owner
Christoph Molnar
Interpretable Machine Learning researcher. Author of Interpretable Machine Learning Book: https://christophm.github.io/interpretable-ml-book/
Christoph Molnar
Lingtrain Alignment Studio is an ML based app for texts alignment on different languages.

Lingtrain Alignment Studio Intro Lingtrain Alignment Studio is the ML based app for accurate texts alignment on different languages. Extracts parallel

Sergei Averkiev 186 Jan 03, 2023
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

Telekom Open Source Software 17 Nov 20, 2022
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
Distributed deep learning on Hadoop and Spark clusters.

Note: we're lovingly marking this project as Archived since we're no longer supporting it. You are welcome to read the code and fork your own version

Yahoo 1.3k Dec 28, 2022
Bayesian optimization in JAX

Bayesian optimization in JAX

Predictive Intelligence Lab 26 May 11, 2022
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

2 Jun 14, 2022
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023