Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Overview

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG)

Divyat Mahajan, Shruti Tople, Amit Sharma

Privacy & Causal Learning (ICML 2020) | MatchDG: Causal View of DG (ICML 2021) | Privacy & DG Connection paper

For machine learning models to be reliable, they need to generalize to data beyond the train distribution. In addition, ML models should be robust to privacy attacks like membership inference and domain knowledge-based attacks like adversarial attacks.

To advance research in building robust and generalizable models, we are releasing a toolkit for building and evaluating ML models, RobustDG. RobustDG contains implementations of domain generalization algorithms and includes evaluation benchmarks based on out-of-distribution accuracy and robustness to membership privacy attacks. We will be adding evaluation for adversarial attacks and more privacy attacks soon.

It is easily extendable. Add your own DG algorithms and evaluate them on different benchmarks.

Installation

To use the command-line interface of RobustDG, clone this repo and add the folder to your system's PATH (or alternatively, run the commands from the RobustDG root directory).

Load dataset

Let's first load the rotatedMNIST dataset in a suitable format for the resnet18 architecture.

python data/data_gen_mnist.py --dataset rot_mnist --model resnet18 --img_h 224 --img_w 224 --subset_size 2000

Train and evaluate ML model

The following commands would train and evalute the MatchDG method on the Rotated MNIST dataset.

python train.py --dataset rot_mnist --method_name matchdg_ctr --match_case 0.0 --match_flag 1 --epochs 50 --batch_size 64 --pos_metric cos --match_func_aug_case 1

python train.py --dataset rot_mnist --method_name matchdg_erm --penalty_ws 0.1 --match_case -1 --ctr_match_case 0.0 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --epochs 25

python test.py --dataset rot_mnist --method_name matchdg_erm --penalty_ws 0.1 --match_case -1 --ctr_match_case 0.0 --ctr_match_flag 1 --ctr_match_interrupt 5 --ctr_model_name resnet18 --epochs 25 --test_metric acc

python test.py --dataset rot_mnist --method_name matchdg_ctr --match_case 0.0 --match_flag 1 --pos_metric cos --test_metric match_score

Demo

A quick introduction on how to use our repository can be accessed here in the Getting Started notebook.

If you are interested in reproducing results from the MatchDG paper, check out the Reproducing results notebook.

Roadmap

  • Support for more domain generalization algorithms like CSD and IRM. If you are an author of a DG algorithm and would like to contribute, please raise a pull request here or get in touch.
  • More evaluation metrics based on adversarial attacks, privacy attacks like model inversion. If you'd like to see an evaluation metric implemented, please raise an issue here.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers Documentation https://www.kxy.ai/reference/ Installation From PyPi: pip inst

KXY Technologies, Inc. 35 Jan 02, 2023
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Felix Daudi 1 Jan 06, 2022
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Spark Python Notebooks This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, fro

Jose A Dianes 1.5k Jan 02, 2023
This machine learning model was developed for House Prices

This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.

serhat_derya 1 Mar 02, 2022
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

Unit8 5.2k Jan 04, 2023
Machine learning algorithms implementation

Machine learning algorithms implementation This repository consisits of implementation of various machine learning algorithms. The algorithms implemen

Karun Dawadi 1 Jan 03, 2022
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
Pydantic based mock data generation

This library offers powerful mock data generation capabilities for pydantic based models. It can also be used with other libraries that use pydantic as a foundation, for example SQLModel, Beanie and

Na'aman Hirschfeld 396 Dec 28, 2022
AutoX是一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色、简单易用、通用、自动化、灵活。

English | 简体中文 AutoX是什么? AutoX一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色: AutoX在多个kaggle数据集上,效果显著优于其他解决方案(见效果对比)。 简单易用: AutoX的接口和sklearn类似,方便上手使用。

4Paradigm 431 Dec 28, 2022