Price forecasting of SGB and IRFC Bonds and comparing there returns

Overview

Project_Bonds

Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns.

Introduction of the Project

The 2008-09 global financial crises and 2020-21 pandemic have shown us the volatility of the market. Many people have are finding a way to invest money to secure their future. People are trying to find a secure investment with minimum financial risks with higher returns. This is also a fact that with investment their also comes with risks. There is a saying in the world of investment “Do not put all your egg in one basket”. We need to diverse portfolio in the area of investment, so that if one investment does not give you enough yields due to fluctuations in the market rates then other will give you higher yield. Bonds are one such investment people prefer the most. The Bonds we have selected are two government bonds – SGB (Sovereign Gold Bond) and IRFC (Indian Railway Finance Corporation). The objective was to forecast the prices of SGB and IRFC bond and calculate the returns. Compare the returns and recommend the client which one to pick based on the input that is number of years to forecast.

Technologies Used

  • Python – ML model (auto_arima (for grid search to find p,q,d values), ARIMA(for forecasting values))
  • SQLite – Database
  • Flask – Front End for deployment
  • Python Libraries – numpy, pandas, Statsmodels, re, nsepy, matplotlib
  • HTML/CSS

General info

This project is simple Forecasting model. Not taxes were put into use when calculating returns. IRFC Bond is a tax free bond but SGB we need to pay taxes if we try to sell it before the maturity period is over. Inflation rate and global pandemic situation is a rare phenonmenon and it is beyond anyone's control. It has been taken into business restriction.
Data has been collected from National Stock exchange of India The two bonds selected from NSE was -

Requirement file (contains libraries and their versions)

Libraries Used

Project Architecture

alt text

Explaining Project Architecture

Live data extraction

The data collected from NSE website (historical data) and the library which is used to collect live daily data from the website is nsepy. The data is then goes to python, two things happens in python. First, out of all the attributes, we only take "Close Price" and then the daily is then converted into monthly data. We use mean to calculate the the monthly average.

Data storage in sqlite

We chose SQLite because it is very easy to use and one does not need the knowledge of sql to observe the data. the database is created locally and and is being updated when the user usses the application. the user can easliy take the database and see the data in SQL viewr online available.

Data is then used by the model

When data is then called back by the python. the python then perform differencing method to remove the trend and seasonality from the data so that our data can be stable. For successful forecasting, it is necessary to keepp the time series data to be stationary.

p,d,q Hyperparameters

We use auto_arima function to calculate p,d,q value. We use re(regex) to store the summary of auto_arima in string format. then use "re.findall()" funtion to collect the value of p,d,q values. The downpoint of using this auto_arima function is that it runs two times when the programes gets executed. It calculate the hyperparameter values for both SGB and IRFC data.

ARIMA

This part is where the data is taken and then fit & predict.
This is for 12 months. Actual Data vs Predicted Data

Model Evaluation

SGB

The RMSE: 93.27 Rs. & The MAPE: 0.0185

IRFC

The RMSE: 21.62 Rs. & The MAPE: 0.0139
(Pretty Good)

Forecasting (12 Months)

Forecasted Data (12 Months)

Returns

This is the part where both SGB and IRFC foecasted data is being collected and based on that returns are calculated. If the SGB returns is higher than IRFC bonds then it will tell the customer about the amount of return for a specific time period.

User Input

The user will be given 3 options as Input. The user will select a specific time period from a drop down list. The options are -

  1. 4 Months (Quaterly)
  2. 6 Months (Half yearly)
  3. 12 Months (Anually)
    This options are time pperiod to forecast. If the user press 6 then the output page will show "6" forecasted values with a range Upper Price, Forecasted Price, Lower Price for both the bonds side by side. Below there will be a text where the returns will be diplayed if the user decides to sell the bonds then.
    12 Months Forecasted Prices - forecasted_prices

Python_code

correlation matrix fig=plt.gcf() fig.set_size_inches(10,8) plt.show() heatmap(gold) heatmap(bond) ############################### Live data to Feature engineering ################################################3 ##Taking close price as our univariate variable ##For gold gold=pd.DataFrame(gold["Close"]) gold["date"]=gold.index gold["date"]=gold['date'].astype(str) gold[["year", "month", "day"]] = gold["date"].str.split(pat="-", expand=True) gold['Dates'] = gold['month'].str.cat(gold['year'], sep ="-") gold.Dates=pd.to_datetime(gold.Dates) gold.set_index('Dates',inplace=True) col_sgb=pd.DataFrame(gold.groupby(gold.index).Close.mean()) ##For bond bond=pd.DataFrame(bond["Close"]) bond["date"]=bond.index bond["date"]=bond['date'].astype(str) bond[["year", "month", "day"]] = bond["date"].str.split(pat="-", expand=True) bond['Dates'] = bond['month'].str.cat(bond['year'], sep ="-") bond.Dates=pd.to_datetime(bond.Dates) bond.set_index('Dates',inplace=True) col_bond=pd.DataFrame(bond.groupby(bond.index).Close.mean()) col_sgb.columns = ["Avg_price"] col_bond.columns = ["Avg_price"] col_bond.isnull().sum() col_sgb.isnull().sum() ############################ SQL connection with monthly data ################################################ ############################### SQL database is created ################################################3 # Connect to the database from sqlalchemy import create_engine engine_sgb = create_engine('sqlite:///gold_database.db', echo=False) col_sgb.to_sql('SGB', con=engine_sgb,if_exists='replace') df_sgb = pd.read_sql('select * from SGB',engine_sgb ) df_sgb.Dates=pd.to_datetime(df_sgb.Dates) df_sgb.set_index('Dates',inplace=True) engine_irfcb = create_engine('sqlite:///irfcb_database.db', echo=False) col_bond.to_sql('IRFCB', con=engine_irfcb,if_exists='replace') df_bond = pd.read_sql('select * from IRFCB',engine_irfcb) df_bond.Dates=pd.to_datetime(df_bond.Dates) df_bond.set_index('Dates',inplace=True) ############################### SQL data to python ################################################3 # Plotting def plotting_bond(y): fig, ax = plt.subplots(figsize=(20, 6)) ax.plot(y,marker='.', linestyle='-', linewidth=0.5, label='Monthly Average') ax.plot(y.resample('Y').mean(),marker='o', markersize=8, linestyle='-', label='Yearly Mean Resample') ax.set_ylabel('Avg_price') ax.legend(); plotting_bond(df_sgb) plotting_bond(df_bond) #univariate analysis of Average Price df_sgb.hist(bins = 50) df_bond.hist(bins = 50) # check Stationary and adf test def test_stationarity(timeseries): #Determing rolling statistics rolmean = timeseries.rolling(12).mean() rolstd = timeseries.rolling(12).std() #Plot rolling statistics: fig, ax = plt.subplots(figsize=(16, 4)) ax.plot(timeseries, label = "Original Price") ax.plot(rolmean, label='rolling mean'); ax.plot(rolstd, label='rolling std'); plt.legend(loc='best') plt.title('Rolling Mean and Standard Deviation - Removed Trend and Seasonality') plt.show(block=False) print("Results of dickey fuller test") adft = adfuller(timeseries,autolag='AIC') print('Test statistic = {:.3f}'.format(adft[0])) print('P-value = {:.3f}'.format(adft[1])) print('Critical values :') for k, v in adft[4].items(): print('\t{}: {} - The data is {} stationary with {}% confidence'.format(k, v, 'not' if v y: a = print("The retrun of SGB is {a} and the return of IRFC Bond is {b} after {c} months".format(a=x,b=y,c=t)) else: a = print("The return of IRFC Bond is{a} and the return of SGB Bond is {b} after {c} months".format(a=x,b=y,c=t)) return a output_(gain_sgb,gain_bond, n) ">
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pylab import rcParams
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.arima.model import ARIMA
from pmdarima.arima import auto_arima
from sklearn.metrics import mean_squared_error
import math
import re
from datetime import date
import nsepy 
import warnings
warnings.filterwarnings("ignore")
####################################          Live data extraction              ###################################################
##Extracting data from nsepy package
da=date.today()
gold= pd.DataFrame(nsepy.get_history(symbol="SGBAUG24",series="GB", start=date(2016,9,1), end=da))
bond= pd.DataFrame(nsepy.get_history(symbol="IRFC",series="N2", start=date(2012,1,1), end=da))

#############################                 Live data  extraction end                  ###############################################

# Heatmap - to check collinearity
def heatmap(x):
    plt.figure(figsize=(16,16))
    sns.heatmap(x.corr(),annot=True,cmap='Blues',linewidths=0.2) #data.corr()-->correlation matrix
    fig=plt.gcf()
    fig.set_size_inches(10,8)
    plt.show()
heatmap(gold)
heatmap(bond)
###############################                Live data to Feature engineering            ################################################3             

##Taking close price as our univariate variable
##For gold
gold=pd.DataFrame(gold["Close"])
gold["date"]=gold.index
gold["date"]=gold['date'].astype(str)
gold[["year", "month", "day"]] = gold["date"].str.split(pat="-", expand=True)
gold['Dates'] = gold['month'].str.cat(gold['year'], sep ="-")
gold.Dates=pd.to_datetime(gold.Dates)
gold.set_index('Dates',inplace=True)
col_sgb=pd.DataFrame(gold.groupby(gold.index).Close.mean())

##For bond
bond=pd.DataFrame(bond["Close"])
bond["date"]=bond.index
bond["date"]=bond['date'].astype(str)
bond[["year", "month", "day"]] = bond["date"].str.split(pat="-", expand=True)
bond['Dates'] = bond['month'].str.cat(bond['year'], sep ="-")
bond.Dates=pd.to_datetime(bond.Dates)
bond.set_index('Dates',inplace=True)
col_bond=pd.DataFrame(bond.groupby(bond.index).Close.mean())

col_sgb.columns = ["Avg_price"]
col_bond.columns = ["Avg_price"]

col_bond.isnull().sum()
col_sgb.isnull().sum()

############################                  SQL connection with monthly data           ################################################ 
###############################                SQL database is created                  ################################################3             

# Connect to the database
from sqlalchemy import create_engine
engine_sgb = create_engine('sqlite:///gold_database.db', echo=False)
col_sgb.to_sql('SGB', con=engine_sgb,if_exists='replace')
df_sgb = pd.read_sql('select * from SGB',engine_sgb )

df_sgb.Dates=pd.to_datetime(df_sgb.Dates)
df_sgb.set_index('Dates',inplace=True)


engine_irfcb = create_engine('sqlite:///irfcb_database.db', echo=False)
col_bond.to_sql('IRFCB', con=engine_irfcb,if_exists='replace')
df_bond = pd.read_sql('select * from IRFCB',engine_irfcb)

df_bond.Dates=pd.to_datetime(df_bond.Dates)
df_bond.set_index('Dates',inplace=True)
###############################                SQL data to python                 ################################################3             



# Plotting
def plotting_bond(y):
    fig, ax = plt.subplots(figsize=(20, 6))
    ax.plot(y,marker='.', linestyle='-', linewidth=0.5, label='Monthly Average')
    ax.plot(y.resample('Y').mean(),marker='o', markersize=8, linestyle='-', label='Yearly Mean Resample')
    ax.set_ylabel('Avg_price')
    ax.legend();
plotting_bond(df_sgb)
plotting_bond(df_bond)

#univariate analysis of Average Price
df_sgb.hist(bins = 50)
df_bond.hist(bins = 50)

# check Stationary and adf test
def test_stationarity(timeseries):
    #Determing rolling statistics
    rolmean = timeseries.rolling(12).mean()
    rolstd = timeseries.rolling(12).std()
    #Plot rolling statistics:
    fig, ax = plt.subplots(figsize=(16, 4))
    ax.plot(timeseries, label = "Original Price")
    ax.plot(rolmean, label='rolling mean');
    ax.plot(rolstd, label='rolling std');
    plt.legend(loc='best')
    plt.title('Rolling Mean and Standard Deviation - Removed Trend and Seasonality')
    plt.show(block=False)
    
    print("Results of dickey fuller test")
    adft = adfuller(timeseries,autolag='AIC')
    print('Test statistic = {:.3f}'.format(adft[0]))
    print('P-value = {:.3f}'.format(adft[1]))
    print('Critical values :')
    for k, v in adft[4].items():
        print('\t{}: {} - The data is {} stationary with {}% confidence'.format(k, v, 'not' if v
    
      y:
        a = print("The retrun of SGB is {a} and the return of IRFC Bond is {b} after {c} months".format(a=x,b=y,c=t))
    else:
        a = print("The return of IRFC Bond is{a} and the return of SGB Bond is {b} after {c} months".format(a=x,b=y,c=t))
    return a
output_(gain_sgb,gain_bond, n)

    

Home Page (Used HTML and CSS)

home

Predict Page

predict

Output Page

output

Project Completed --

Owner
Tishya S
Data Science aspirant
Tishya S
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
This repository contains the code to predict house price using Linear Regression Method

House-Price-Prediction-Using-Linear-Regression The dataset I used for this personal project is from Kaggle uploaded by aariyan panchal. Link of Datase

0 Jan 28, 2022
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application

Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera

Intel Corporation 858 Dec 25, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022
Applied Machine Learning for Graduate Program in Computer Science (PPGCC)

Applied Machine Learning for Graduate Program in Computer Science (PPGCC) - Federal University of Santa Catarina

Jônatas Negri Grandini 1 Dec 22, 2021
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
This is the code repository for LRM Stochastic watershed model.

LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit

1 Feb 14, 2022
Bayesian optimization in JAX

Bayesian optimization in JAX

Predictive Intelligence Lab 26 May 11, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

mlflow_hydra_optuna_the_easy_way The easy way to combine mlflow, hydra and optuna into one machine learning pipeline. Objective TODO Usage 1. build do

shibuiwilliam 9 Sep 09, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022