Apple-voice-recognition - Machine Learning

Overview

Apple-voice-recognition

Machine Learning


Visual Studio Code

How does Siri work?


Siri is based on large-scale Machine Learning systems that employ many aspects of data science.

Upon receiving your request, Siri records the frequencies and sound waves from your voice and translates them into a code. Siri then breaks down the code to identify particular patterns, phrases, and keywords. This data gets input into an algorithm that sifts through thousands of combinations of sentences to determine what the inputted phrase means. This algorithm is complex enough that it is capable of working around idioms, homophones and other literary expressions to determine the context of a sentence.

Once Siri determines its request, it begins to assess what tasks needs to be carried out, determining whether or not the information needed can be accessed from within the phone’s data banks or from online servers. Siri is then able to craft complete and cohesive sentences relevant to the type of question or command requested.

Technology behind Voice Identification


Voice identification technology captures and measures the physical qualities of a person’s voice when speaking as well as the unique biological parameters that combine to produce that voice.

Visual Studio Code

These parameters Include:

#1 Pitch


Pitch is an important perceptual dimension by which listeners discriminate and categorize voice quality. It affects the perceived brightness of the sound, and brightness may be one of several perceptual features of a sound used by listeners to distinguish one voice quality from another.

#2 Intensity


The increased vocal intensity results from a greater resistance by the vocal folds to increased airflow. The vocal folds are blown wider apart, releasing a larger puff of air that sets up a sound pressure wave of greater amplitude.

#3 Dynamics


Within-person variability in our vocal signals is substantial: we volitionally modulate our voices to express our thoughts and intentions or adjust our vocal outputs to suit a particular audience, speaking environment, or situation.

Prerequisites


On the Terminal run - pip install speaker-verification-toolkit
On the Terminal run - pip install numba==0.48
In case an ERROR occurs while installing numba==0.48 then :
On the Terminal run - pip install librosa --ignore-installed llvmlite

Extra


> Numba is an upgraded version of Numpy.
> Librosa is a python package for music and audio analysis.
> svt.rms_silence_filter() used for filtering environment noise.
> Mel-Frequency Cepstral Coefficients (MFCC) feature extraction method is a leading approach for speech feature extraction and current research aims to identify performance enhancements.
> Known_1, Known_2, Unknown are sample audio voices.
> Covert audio from .mp4 to .wav beacuse librosa supports .wav.

Owner
Harshith VH
Student at Dayananda Sagar College of Engineering, Bangalore
Harshith VH
Predict profitability of trades based on indicator buy / sell signals

Predict profitability of trades based on indicator buy / sell signals Trade profitability analysis for trades based on various indicators signals: MAC

Tomasz Porzycki 1 Dec 15, 2021
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning

Microsoft 149 Jan 06, 2023
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
MLOps pipeline project using Amazon SageMaker Pipelines

This project shows steps to build an end to end MLOps architecture that covers data prep, model training, realtime and batch inference, build model registry, track lineage of artifacts and model drif

AWS Samples 3 Sep 16, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Stox A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict

Stox 31 Dec 16, 2022
Implementation of deep learning models for time series in PyTorch.

List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Yunkai Zhang 275 Dec 28, 2022
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 02, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023
CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

Zelros 67 Dec 28, 2022
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
Real-time domain adaptation for semantic segmentation

Advanced-Machine-Learning This repository contains the code for the project Real

Andrea Cavallo 1 Jan 30, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022