Apple-voice-recognition - Machine Learning

Overview

Apple-voice-recognition

Machine Learning


Visual Studio Code

How does Siri work?


Siri is based on large-scale Machine Learning systems that employ many aspects of data science.

Upon receiving your request, Siri records the frequencies and sound waves from your voice and translates them into a code. Siri then breaks down the code to identify particular patterns, phrases, and keywords. This data gets input into an algorithm that sifts through thousands of combinations of sentences to determine what the inputted phrase means. This algorithm is complex enough that it is capable of working around idioms, homophones and other literary expressions to determine the context of a sentence.

Once Siri determines its request, it begins to assess what tasks needs to be carried out, determining whether or not the information needed can be accessed from within the phone’s data banks or from online servers. Siri is then able to craft complete and cohesive sentences relevant to the type of question or command requested.

Technology behind Voice Identification


Voice identification technology captures and measures the physical qualities of a person’s voice when speaking as well as the unique biological parameters that combine to produce that voice.

Visual Studio Code

These parameters Include:

#1 Pitch


Pitch is an important perceptual dimension by which listeners discriminate and categorize voice quality. It affects the perceived brightness of the sound, and brightness may be one of several perceptual features of a sound used by listeners to distinguish one voice quality from another.

#2 Intensity


The increased vocal intensity results from a greater resistance by the vocal folds to increased airflow. The vocal folds are blown wider apart, releasing a larger puff of air that sets up a sound pressure wave of greater amplitude.

#3 Dynamics


Within-person variability in our vocal signals is substantial: we volitionally modulate our voices to express our thoughts and intentions or adjust our vocal outputs to suit a particular audience, speaking environment, or situation.

Prerequisites


On the Terminal run - pip install speaker-verification-toolkit
On the Terminal run - pip install numba==0.48
In case an ERROR occurs while installing numba==0.48 then :
On the Terminal run - pip install librosa --ignore-installed llvmlite

Extra


> Numba is an upgraded version of Numpy.
> Librosa is a python package for music and audio analysis.
> svt.rms_silence_filter() used for filtering environment noise.
> Mel-Frequency Cepstral Coefficients (MFCC) feature extraction method is a leading approach for speech feature extraction and current research aims to identify performance enhancements.
> Known_1, Known_2, Unknown are sample audio voices.
> Covert audio from .mp4 to .wav beacuse librosa supports .wav.

Owner
Harshith VH
Student at Dayananda Sagar College of Engineering, Bangalore
Harshith VH
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
A simple machine learning python sign language detection project.

SST Coursework 2022 About the app A python application that utilises the tensorflow object detection algorithm to achieve automatic detection of ameri

Xavier Koh 2 Jun 30, 2022
EbookMLCB - ebook Machine Learning cơ bản

Mã nguồn cuốn ebook "Machine Learning cơ bản", Vũ Hữu Tiệp. ebook Machine Learning cơ bản pdf-black_white, pdf-color. Mọi hình thức sao chép, in ấn đề

943 Jan 02, 2023
Cryptocurrency price prediction and exceptions in python

Cryptocurrency price prediction and exceptions in python This is a coursework on foundations of computing module Through this coursework i worked on m

Panagiotis Sotirellos 1 Nov 07, 2021
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

SUN Group @ UMN 28 Aug 03, 2022
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
Microsoft 5.6k Jan 07, 2023
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing variance.

minvar_invest_portfolio This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing var

1 Jan 06, 2022
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022