Apple-voice-recognition - Machine Learning

Overview

Apple-voice-recognition

Machine Learning


Visual Studio Code

How does Siri work?


Siri is based on large-scale Machine Learning systems that employ many aspects of data science.

Upon receiving your request, Siri records the frequencies and sound waves from your voice and translates them into a code. Siri then breaks down the code to identify particular patterns, phrases, and keywords. This data gets input into an algorithm that sifts through thousands of combinations of sentences to determine what the inputted phrase means. This algorithm is complex enough that it is capable of working around idioms, homophones and other literary expressions to determine the context of a sentence.

Once Siri determines its request, it begins to assess what tasks needs to be carried out, determining whether or not the information needed can be accessed from within the phone’s data banks or from online servers. Siri is then able to craft complete and cohesive sentences relevant to the type of question or command requested.

Technology behind Voice Identification


Voice identification technology captures and measures the physical qualities of a person’s voice when speaking as well as the unique biological parameters that combine to produce that voice.

Visual Studio Code

These parameters Include:

#1 Pitch


Pitch is an important perceptual dimension by which listeners discriminate and categorize voice quality. It affects the perceived brightness of the sound, and brightness may be one of several perceptual features of a sound used by listeners to distinguish one voice quality from another.

#2 Intensity


The increased vocal intensity results from a greater resistance by the vocal folds to increased airflow. The vocal folds are blown wider apart, releasing a larger puff of air that sets up a sound pressure wave of greater amplitude.

#3 Dynamics


Within-person variability in our vocal signals is substantial: we volitionally modulate our voices to express our thoughts and intentions or adjust our vocal outputs to suit a particular audience, speaking environment, or situation.

Prerequisites


On the Terminal run - pip install speaker-verification-toolkit
On the Terminal run - pip install numba==0.48
In case an ERROR occurs while installing numba==0.48 then :
On the Terminal run - pip install librosa --ignore-installed llvmlite

Extra


> Numba is an upgraded version of Numpy.
> Librosa is a python package for music and audio analysis.
> svt.rms_silence_filter() used for filtering environment noise.
> Mel-Frequency Cepstral Coefficients (MFCC) feature extraction method is a leading approach for speech feature extraction and current research aims to identify performance enhancements.
> Known_1, Known_2, Unknown are sample audio voices.
> Covert audio from .mp4 to .wav beacuse librosa supports .wav.

Owner
Harshith VH
Student at Dayananda Sagar College of Engineering, Bangalore
Harshith VH
💀mummify: a version control tool for machine learning

mummify is a version control tool for machine learning. It's simple, fast, and designed for model prototyping.

Max Humber 43 Jul 09, 2022
Predict the demand for electricity (R) - FRENCH

06.demand-electricity Predict the demand for electricity (R) - FRENCH Prédisez la demande en électricité Prérequis Pour effectuer ce projet, vous devr

1 Feb 13, 2022
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to

1 Oct 28, 2021
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Databricks Certification Spark Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along

19 Dec 13, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
Uber Open Source 1.6k Dec 31, 2022
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023
This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

B DEVA DEEKSHITH 1 Nov 03, 2021
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
A toolbox to iNNvestigate neural networks' predictions!

iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In

Maximilian Alber 1.1k Jan 05, 2023
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022