πŸ€– ⚑ scikit-learn tips

Overview

πŸ€– ⚑ scikit-learn tips

New tips are posted on LinkedIn, Twitter, and Facebook.

πŸ‘‰ Sign up to receive 2 video tips by email every week! πŸ‘ˆ

List of all tips

Click to discuss the tip on LinkedIn, click to view the Jupyter notebook for a tip, or click to watch the tip video on YouTube:

# Description Links
1 Use ColumnTransformer to apply different preprocessing to different columns
2 Seven ways to select columns using ColumnTransformer
3 What is the difference between "fit" and "transform"?
4 Use "fit_transform" on training data, but "transform" (only) on testing/new data
5 Four reasons to use scikit-learn (not pandas) for ML preprocessing
6 Encode categorical features using OneHotEncoder or OrdinalEncoder
7 Handle unknown categories with OneHotEncoder by encoding them as zeros
8 Use Pipeline to chain together multiple steps
9 Add a missing indicator to encode "missingness" as a feature
10 Set a "random_state" to make your code reproducible
11 Impute missing values using KNNImputer or IterativeImputer
12 What is the difference between Pipeline and make_pipeline?
13 Examine the intermediate steps in a Pipeline
14 HistGradientBoostingClassifier natively supports missing values
15 Three reasons not to use drop='first' with OneHotEncoder
16 Use cross_val_score and GridSearchCV on a Pipeline
17 Try RandomizedSearchCV if GridSearchCV is taking too long
18 Display GridSearchCV or RandomizedSearchCV results in a DataFrame
19 Important tuning parameters for LogisticRegression
20 Plot a confusion matrix
21 Compare multiple ROC curves in a single plot
22 Use the correct methods for each type of Pipeline
23 Display the intercept and coefficients for a linear model
24 Visualize a decision tree two different ways
25 Prune a decision tree to avoid overfitting
26 Use stratified sampling with train_test_split
27 Two ways to impute missing values for a categorical feature
28 Save a model or Pipeline using joblib
29 Vectorize two text columns in a ColumnTransformer
30 Four ways to examine the steps of a Pipeline
31 Shuffle your dataset when using cross_val_score
32 Use AUC to evaluate multiclass problems
33 Use FunctionTransformer to convert functions into transformers
34 Add feature selection to a Pipeline
35 Don't use .values when passing a pandas object to scikit-learn
36 Most parameters should be passed as keyword arguments
37 Create an interactive diagram of a Pipeline in Jupyter
38 Get the feature names output by a ColumnTransformer
39 Load a toy dataset into a DataFrame
40 Estimators only print parameters that have been changed
41 Drop the first category from binary features (only) with OneHotEncoder
42 Passthrough some columns and drop others in a ColumnTransformer
43 Use OrdinalEncoder instead of OneHotEncoder with tree-based models
44 Speed up GridSearchCV using parallel processing
45 Create feature interactions using PolynomialFeatures
46 Ensemble multiple models using VotingClassifer or VotingRegressor
47 Tune the parameters of a VotingClassifer or VotingRegressor
48 Access part of a Pipeline using slicing
49 Tune multiple models simultaneously with GridSearchCV
50 Adapt this pattern to solve many Machine Learning problems

You can interact with all of these notebooks online using Binder:

Note: Some of the tips do not include any code, and can only be viewed on LinkedIn.

Who creates these tips?

Hi! I'm Kevin Markham, the founder of Data School. I've been teaching data science in Python since 2014. I create these tips because I love using scikit-learn and I want to help others use it more effectively.

How can I get better at scikit-learn?

I teach three courses:

πŸ‘‰ Find out which course is right for you! πŸ‘ˆ

Do you have any other tips?

Yes! In 2019, I posted 100 pandas tricks. I also created a video featuring my top 25 pandas tricks.

Β© 2020-2021 Data School. All rights reserved.

Owner
Kevin Markham
Founder of Data School
Kevin Markham
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023
XManager: A framework for managing machine learning experiments πŸ§‘β€πŸ”¬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
Upgini : data search library for your machine learning pipelines

Automated data search library for your machine learning pipelines β†’ find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:

Upgini 175 Jan 08, 2023
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
Machine Learning Algorithms

Machine-Learning-Algorithms In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the p

Gâktuğ Ayar 3 Aug 10, 2022
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy m

Robin 55 Dec 27, 2022
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

Victor Umunna 7 Oct 13, 2022