fMRIprep Pipeline To Machine Learning

Overview

fMRIprep Pipeline To Machine Learning(Demo)

所有配置均在config.py文件下定义

前置环境(lilab)

  • 各个节点均安装docker,并有fmripre的镜像
  • 可以使用conda中的base环境(相应的第三份包之后更新)

1. fmriprep script on single machine(docker)

config.py中的fMRI_Prep_Job类中配置相应变量,注意在修改cmd时,不能修改{}中的关键字。在执行此步骤时,将自动在bids同级目录下建立processed文件夹,用来存放后处理数据。其中处理后的fmriprep数据存放在processed/frmriprepprceossed/fressurfer中。

class fMRI_Prep_Job:
    # input data path
    bids_data_path  = "/share/data2/dataset/ds002748/depression"
    # 一个容器中处理多少个被试 
    step = 8
    # fmriprep opm thread
    thread = 9
    # max work contianers
    max_work_nums = 10

    # 在bids同级目录下创建processed文件夹
    bids_output_path = os.path.join("/".join(bids_data_path.split('/')[:-1]),'processed')
    if not os.path.exists(bids_output_path):
        os.mkdir(bids_output_path)
    # fmri work path 
    fmri_work="/share/fmri_work"
    # freesurfer_license
    freesurfer_license = "/share/user_data/public/fanq_ocd/license.txt"
    # contianer id fmriprep
    contianer_id = "d7235efbbd3c"
    # fmriprep cmd 
    cmd ="docker run -it --rm -v {bids_data_path}:/data -v {freesurfer_license}:/opt/freesurfer/license.txt -v {bids_output_path}:/out -v {fmri_work}:/work {contianer_id} /data /out --skip_bids_validation --ignore slicetiming fieldmaps  -w /work --omp-nthreads {thread} --fs-no-reconall --resource-monitor participant --participant-label {subject_ids}"

2. fmriprep post preocess

这一步的操作主要依赖于fmribrant,主要作用是回归掉白质信号、脑脊液信号、全脑信号、头动信息、并进行滤波(可选),将其处理后的文件放存在prcoessed/post-precoss/ fliter/clean_imgs 中, 可选表示是否进行滤波。该配置中不建议修改dataset_path,store_path

class PostProcess:
    """
    fmriprep 后处理数据
    """
    # 类型的名字
    task_type = "rest"

    dataset_path = os.path.join(fMRI_Prep_Job.bids_output_path,'fmriprep')

    store_path = os.path.join(fMRI_Prep_Job.bids_output_path,'post-process')

    t_r = 2.5

    low_pass = 0.08

    high_pass = 0.01

    n_process = 40

    if t_r != None:
        store_path = os.path.join(store_path,'filter','clean_imgs')
    else:
        store_path = os.path.join(store_path,'unfilter','clean_imgs')

    os.makedirs(store_path,exist_ok=True)

3.获取ROI级别的时间序列

atlas由271个roi组成,分别是Schaefer_200(皮上),Tianye_54(皮下),Buckner_17(小脑)。由于在fmribrant中实现提取时间序列的功能,简单封装一下。

class RoiTs:
    """
    ROI 级别时间序列
    处理271个全脑roi
    """
    n_process = 40

    # 如果在第二步fmri post process已经滤波之后,不建议再次使用滤波操作
    t_r = None
    
    low_pass = None

    high_pass = None
    
    flag_gs = False #  回归全脑均值为 True 否则为False
    # 以下内容不建议修改

    if flag_gs:
        file_name = "*with_gs.nii.gz"
        ts_file = "GS"
    else:
        file_name = "*without_gs.nii.gz"
        ts_file = "NO_GS"
    
    reg_path = os.path.join(PostProcess.store_path,"*",PostProcess.task_type,file_name)
    
    subject_id_index = -3

    save_path = os.path.join("/".join(PostProcess.store_path.split('/')[:-1]),'timeseries',ts_file)

    os.makedirs(save_path,exist_ok=True)

4. Machine Learning(Baseline)

这一步是可选的,一般先用来看看FC做性别分类、年龄回归的效果如何。只保留粗略结果,详细结果可以使用baseline这个包。

class ML:
    # 选择的subject id 默认是全部
    sub_ids = [i.split('.')[0] for i in os.listdir(RoiTs.save_path)]
    # 量表位置
    csv = pd.read_csv('/share/data2/dataset/ds002748/depression/participants.tsv',sep='\t')
    #取交集
    csv = pd.DataFrame({"participant_id":sub_ids}).merge(csv)
    # 分类的任务
    classifies = ["gender"]
    # 回归的任务
    regressions = ["age"]
    # 分类模型
    classify_models = [SVC(),SVC(C=100),SVC(kernel='linear'),SVC(kernel='linear',C=100)]
    # 回归模型
    regress_models = [SVR(),SVR(C=100),SVR(kernel='linear'),SVR(kernel='linear',C=100)]
    kfold = 3
    # 多少个roi
    rois = 200

5. run

修改script/run.py

from fmriprep_job import run_fmri_prep
from fmriprep_pprocess import  run as pp_run
from roi2ts import run as roi_ts_run
from fast_fc_ml import run as ml_run


if __name__ =='__main__':
    run_fmri_prep() # fmriprep
    pp_run() # fmriprep post process
    roi_ts_run() # get roi time series
    ml_run() # machine learning

然后执行

python run.py

6. To Do

  • 质量控制
Owner
Alien
A student
Alien
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies

Amichay Oren 458 Dec 24, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Jan 03, 2023
Decision Tree Regression algorithm implemented on Python from scratch.

Decision_Tree_Regression I implemented the decision tree regression algorithm on Python. Unlike regular linear regression, this algorithm is used when

1 Dec 22, 2021
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
🌊 River is a Python library for online machine learning.

River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition is to be the go-to library for doing machine learning on strea

OnlineML 4k Jan 03, 2023
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Fundamentals of Machine Learning

Fundamentals-of-Machine-Learning This repository introduces the basics of machine learning algorithms for preprocessing, regression and classification

Happy N. Monday 3 Feb 15, 2022
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.

Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui

Renan Barbosa 1 Jan 10, 2022
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
Predicting India’s COVID-19 Third Wave with LSTM

Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

Samrat Dutta 4 Jan 27, 2022
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM

Joaquín Amat Rodrigo 297 Jan 09, 2023
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023