Combines Bayesian analyses from many datasets.

Overview

PosteriorStacker

Combines Bayesian analyses from many datasets.

Introduction

Fitting a model to a data set gives posterior probability distributions for a parameter of interest. But how do you combine such probability distributions if you have many datasets?

This question arises frequently in astronomy when analysing samples, and trying to infer sample distributions of some quantity.

PosteriorStacker allows deriving sample distributions from posterior distributions from a number of objects.

Method

The method is described in Appendix A of Baronchelli, Nandra & Buchner (2020).

hbm.png

The inputs are posterior samples of a single parameter, for a number of objects. These need to come from pre-existing analyses, under a flat parameter prior.

The hierarchical Bayesian model (illustrated above) models the sample distribution as a Gaussian with unknown mean and standard deviation. The per-object parameters are also unknown, but integrated out numerically using the posterior samples.

Additional to the Gaussian model (as in the paper), a histogram model (using a flat Dirichlet prior distribution) is computed, which is non-parametric and more flexible. Both models are inferred using UltraNest.

The output is visualised in a publication-ready plot.

Synopsis of the program:

$ python3 posteriorstacker.py --help
usage: posteriorstacker.py [-h] [--verbose VERBOSE] [--name NAME]
                           filename low high nbins

Posterior stacking tool.

Johannes Buchner (C) 2020-2021

Given posterior distributions of some parameter from many objects,
computes the sample distribution, using a simple hierarchical model.

The method is described in Baronchelli, Nandra & Buchner (2020)
https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.5284B/abstract
Two computations are performed with this tool:

- Gaussian model (as in the paper)
- Histogram model (using a Dirichlet prior distribution)

The histogram model is non-parametric and more flexible.
Both models are computed using UltraNest.
The output is plotted.

positional arguments:
  filename           Filename containing posterior samples, one object per line
  low                Lower end of the distribution
  high               Upper end of the distribution
  nbins              Number of histogram bins

optional arguments:
  -h, --help         show this help message and exit
  --verbose VERBOSE  Show progress
  --name NAME        Parameter name (for plot)

Johannes Buchner (C) 2020-2021 

Licence

AGPLv3 (see COPYING file). Contact me if you need a different licence.

Install

Clone or download this repository. You need to install the ultranest python package (e.g., with pip).

Tutorial

In this tutorial you will learn:

  • How to find a intrinsic distribution from data with asymmetric error bars and upper limits
  • How to use PosteriorStacker

Lets say we want to find the intrinsic velocity dispersion given some noisy data points.

Our data are velocity measurements of a few globular cluster velocities in a dwarf galaxy, fitted with some model.

Preparing the inputs

For generating the demo input files and plots, run:

$ python3 tutorial/gendata.py

Visualise the data

Lets plot the data first to see what is going on:

example.png

Caveat on language: These are not actually "the data" (which are counts on a CCD). Instead, this is a intermediate representation of a posterior/likelihood, assuming flat priors on velocity.

Data properties

This scatter plot shows:

  • large, sometimes asymmetric error bars
  • intrinsic scatter

Resampling the data

We could also represent each data point by a cloud of samples. Each point represents a possible true solution of that galaxy.

example-samples.png

Running PosteriorStacker

We run the script with a range limit of +-100 km/s:

$ python3 posteriorstacker.py posteriorsamples.txt -80 +80 11 --name="Velocity [km/s]"
fitting histogram model...
[ultranest] Sampling 400 live points from prior ...
[ultranest] Explored until L=-1e+01
[ultranest] Likelihood function evaluations: 114176
[ultranest] Writing samples and results to disk ...
[ultranest] Writing samples and results to disk ... done
[ultranest]   logZ = -20.68 +- 0.06865
[ultranest] Effective samples strategy satisfied (ESS = 684.4, need >400)
[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.08 nat, need <0.50 nat)
[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.14, need <0.5)
[ultranest]   logZ error budget: single: 0.07 bs:0.07 tail:0.41 total:0.41 required:<0.50
[ultranest] done iterating.

logZ = -20.677 +- 0.424
  single instance: logZ = -20.677 +- 0.074
  bootstrapped   : logZ = -20.676 +- 0.123
  tail           : logZ = +- 0.405
insert order U test : converged: False correlation: 377.0 iterations

    bin1                0.051 +- 0.046
    bin2                0.052 +- 0.051
    bin3                0.065 +- 0.058
    bin4                0.062 +- 0.057
    bin5                0.108 +- 0.085
    bin6                0.31 +- 0.14
    bin7                0.16 +- 0.10
    bin8                0.051 +- 0.050
    bin9                0.047 +- 0.044
    bin10               0.048 +- 0.047
    bin11               0.047 +- 0.045
fitting gaussian model...
[ultranest] Sampling 400 live points from prior ...
[ultranest] Explored until L=-4e+01
[ultranest] Likelihood function evaluations: 4544
[ultranest] Writing samples and results to disk ...
[ultranest] Writing samples and results to disk ... done
[ultranest]   logZ = -47.33 +- 0.07996
[ultranest] Effective samples strategy satisfied (ESS = 1011.4, need >400)
[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.07 nat, need <0.50 nat)
[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.17, need <0.5)
[ultranest]   logZ error budget: single: 0.13 bs:0.08 tail:0.41 total:0.41 required:<0.50
[ultranest] done iterating.

logZ = -47.341 +- 0.440
  single instance: logZ = -47.341 +- 0.126
  bootstrapped   : logZ = -47.331 +- 0.173
  tail           : logZ = +- 0.405
insert order U test : converged: False correlation: 13.0 iterations

    mean                -0.3 +- 4.7
    std                 11.6 +- 5.2

Vary the number of samples to check numerical stability!
plotting results ...

Notice the parameters of the fitted gaussian distribution above. The standard deviation is quite small (which was the point of the original paper). A corner plot is at posteriorsamples.txt_out_gauss/plots/corner.pdf

Visualising the results

Here is the output plot, converted to png for this tutorial with:

$ convert -density 100 posteriorsamples.txt_out.pdf out.png

out.png

In black, we see the non-parametric fit. The red curve shows the gaussian model.

The histogram model indicates that a more heavy-tailed distribution may be better.

The error bars in gray is the result of naively averaging the posteriors. This is not a statistically meaningful procedure, but it can give you ideas what models you may want to try for the sample distribution.

Output files

  • posteriorsamples.txt_out.pdf contains a plot,
  • posteriorsamples.txt_out_gauss contain the ultranest analyses output assuming a Gaussian distribution.
  • posteriorsamples.txt_out_flexN contain the ultranest analyses output assuming a histogram model.
  • The directories include diagnostic plots, corner plots and posterior samples of the distribution parameters.

With these output files, you can:

  • plot the sample parameter distribution
  • report the mean and spread, and their uncertainties
  • split the sample by some parameter, and plot the sample mean as a function of that parameter.

If you want to adjust the plot, just edit the script.

If you want to try a different distribution, adapt the script. It uses UltraNest for the inference.

Take-aways

  • PosteriorStacker computed a intrinsic distribution from a set of uncertain measurements
  • This tool can combine arbitrarily pre-existing analyses.
  • No assumptions about the posterior shapes were necessary -- multi-modal and asymmetric works fine.
Owner
Johannes Buchner
Johannes Buchner
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to

1 Oct 28, 2021
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
An easier way to build neural search on the cloud

Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the effici

Jina AI 17k Jan 01, 2023
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

42 Dec 23, 2022
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Time Series Prediction with tf.contrib.timeseries

TensorFlow-Time-Series-Examples Additional examples for TensorFlow Time Series(TFTS). Read a Time Series with TFTS From a Numpy Array: See "test_input

Zhiyuan He 476 Nov 17, 2022
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022