Python Research Framework

Related tags

Machine Learningpyfra
Overview

pyfra

The Python Research Framework.

Design Philosophy

Research code has some of the fastest shifting requirements of any type of code. It's nearly impossible to plan ahead of time the proper abstractions, because it is exceedingly likely that in the course of the project what you originally thought was your main focus suddenly no longer is. Further, research code (especially in ML) often involves big and complicated pipelines, typically involving many different machines, which are either run by hand or using shell scripts that are far more complicated than any shell script ever should be.

Therefore, the objective of pyfra is to make it as fast and low-friction as possible to write research code involving complex pipelines over many machines. This entails making it as easy as possible to implement a research idea in reality, at the cost of fine-grained control and the long-term maintainability of the system. In other words, pyfra expects that code will either be rapidly obsoleted by newer code, or rewritten using some other framework once it is no longer a research project and requirements have settled down.

Pyfra is in its very early stages of development. The interface may change rapidly and without warning.

Features:

  • Spin up an internal webserver complete with a permissions system using only a few lines of code
  • Extremely elegant shell integration—run commands on any server seamlessly. All the best parts of bash and python combined
  • Automated remote environment setup, so you never have to worry about provisioning machines by hand again
  • (WIP) Tools for painless functional programming in python
  • (Coming soon) High level API for experiment management/scheduling and resource provisioning
  • (Coming soon) Idempotent resumable data pipelines with no cognitive overhead

Example code

from pyfra import *

loc = Remote()
rem = Remote("[email protected]")
nas = Remote("[email protected]")

@page("Run experiment", dropdowns={'server': ['local', 'remote']})
def run_experiment(server: str, config_file: str, some_numerical_value: int, some_checkbox: bool):
    r = loc if server == 'local' else rem

    r.sh("git clone https://github.com/EleutherAI/gpt-neox")
    
    # rsync as a function can do local-local, local-remote, and remote-remote
    rsync(config_file, r.file("gpt-neox/configs/my-config.yml"))
    rsync(nas.file('some_data_file'), r.file('gpt-neox/data/whatever'))
    
    return r.sh('cd gpt-neox; python3 main.py')

@page("Write example file and copy")
def example():
    rem.fwrite("testing.txt", "hello world")
    
    # tlocal files can be specified as just a string
    rsync(rem.file('testing123.txt'), 'test1.txt')
    rsync(rem.file('testing123.txt'), loc.file('test2.txt'))

    loc.sh('cat test1.txt')
    
    assert fread('test1.txt') == fread('test2.txt')
    
    # fread, fwrite, etc can take a `rem.file` instead of a string filename.
    # you can also use all *read and *write functions directly on the remote too.
    assert fread('test1.txt') == fread(rem.file('testing123.txt'))
    assert fread('test1.txt') == rem.fread('testing123.txt')

    # ls as a function returns a list of files (with absolute paths) on the selected remote.
    # the returned value is displayed on the webpage.
    return '\n'.join(rem.ls('/'))

@page("List files in some directory")
def list_files(directory):
    return sh(f"ls -la {directory | quote}")


# start internal webserver
webserver()

Installation

pip3 install git+https://github.com/EleutherAI/pyfra/

The version of PyPI is not up to date, do not use it.

Webserver screenshots

image image

Comments
  • Try to install sudo in _install

    Try to install sudo in _install

    Sudo is installed in setup.apt(), which is not run when python_version=None is set for an env. This PR tries to install the sudo package on _install which solves this issue.

    opened by kurumuz 1
  • Styling updates 2

    Styling updates 2

    This should fix some issues that were noticed recently.

    • increases the width of the content in the middle
    • all button icons are now the same (until we figure out better solution)
    • content that is overflowing should now be scrollable
    opened by jprester 0
  • Update styling

    Update styling

    I made some updates to styling for the admin dashboard pages.

    Stuff I did:

    • changed the styling to look like design mockup
    • moved ids to classes in css. Ids should be used for javascript selector
    • added some svg icons
    • made the UI somewhat responsive
    opened by jprester 0
  • docs: docs are empty

    docs: docs are empty

    Screenshot from the RTD page:

    image

    I recommend checking the raw output of the build on the RTD dashboard.

    Probably some library installation issue when running setup.

    opened by TomFrederik 0
  • Type annotations

    Type annotations

    Type annotations are a must-have for public facing library exports, as they allow users to infer a lot of information about calls/return values independent of documentation, as well as help with code completions.

    opened by hugbubby 0
Releases(v0.3.0)
  • v0.3.0(Dec 9, 2021)

    What's new

    • Envs now resume where they left off (and Remotes have an option for turning this behaviour on)
    • @stage caching added

    Breaking Changes

    • delegation promoted to full submodule and experiment removed
    • pyfra.functional removed
    • pyfra.web deprecated and moved to contrib
    • contrib revamp

    Full Changelog: https://github.com/EleutherAI/pyfra/compare/8e775df36ca8f2ae39b0b7add9c30eab446207b1...9616e835578f8ad04a6d9c3b405777fc4b7e0853

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0rc6(Sep 1, 2021)

Owner
EleutherAI
EleutherAI
Code for the TCAV ML interpretability project

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C

552 Dec 27, 2022
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
Lseng-iseng eksplor Machine Learning dengan menggunakan library Scikit-Learn

Kalo dengar istilah ML, biasanya rada ambigu. Soalnya punya beberapa kepanjangan, seperti Mobile Legend, Makan Lontong, Ma**ng L*v* dan lain-lain. Tapi pada repo ini membahas Machine Learning :)

Alfiyanto Kondolele 1 Apr 06, 2022
Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Federal University of Rio Grande do Norte Technology Center Department of Computer Engineering and Automation Machine Learning Based Systems Design Re

Ivanovitch Silva 81 Oct 18, 2022
PySurvival is an open source python package for Survival Analysis modeling

PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p

Square 265 Dec 27, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
SynapseML - an open source library to simplify the creation of scalable machine learning pipelines

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 01, 2023
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Thoughtworks 318 Jan 02, 2023
Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023