Python Research Framework

Related tags

Machine Learningpyfra
Overview

pyfra

The Python Research Framework.

Design Philosophy

Research code has some of the fastest shifting requirements of any type of code. It's nearly impossible to plan ahead of time the proper abstractions, because it is exceedingly likely that in the course of the project what you originally thought was your main focus suddenly no longer is. Further, research code (especially in ML) often involves big and complicated pipelines, typically involving many different machines, which are either run by hand or using shell scripts that are far more complicated than any shell script ever should be.

Therefore, the objective of pyfra is to make it as fast and low-friction as possible to write research code involving complex pipelines over many machines. This entails making it as easy as possible to implement a research idea in reality, at the cost of fine-grained control and the long-term maintainability of the system. In other words, pyfra expects that code will either be rapidly obsoleted by newer code, or rewritten using some other framework once it is no longer a research project and requirements have settled down.

Pyfra is in its very early stages of development. The interface may change rapidly and without warning.

Features:

  • Spin up an internal webserver complete with a permissions system using only a few lines of code
  • Extremely elegant shell integration—run commands on any server seamlessly. All the best parts of bash and python combined
  • Automated remote environment setup, so you never have to worry about provisioning machines by hand again
  • (WIP) Tools for painless functional programming in python
  • (Coming soon) High level API for experiment management/scheduling and resource provisioning
  • (Coming soon) Idempotent resumable data pipelines with no cognitive overhead

Example code

from pyfra import *

loc = Remote()
rem = Remote("[email protected]")
nas = Remote("[email protected]")

@page("Run experiment", dropdowns={'server': ['local', 'remote']})
def run_experiment(server: str, config_file: str, some_numerical_value: int, some_checkbox: bool):
    r = loc if server == 'local' else rem

    r.sh("git clone https://github.com/EleutherAI/gpt-neox")
    
    # rsync as a function can do local-local, local-remote, and remote-remote
    rsync(config_file, r.file("gpt-neox/configs/my-config.yml"))
    rsync(nas.file('some_data_file'), r.file('gpt-neox/data/whatever'))
    
    return r.sh('cd gpt-neox; python3 main.py')

@page("Write example file and copy")
def example():
    rem.fwrite("testing.txt", "hello world")
    
    # tlocal files can be specified as just a string
    rsync(rem.file('testing123.txt'), 'test1.txt')
    rsync(rem.file('testing123.txt'), loc.file('test2.txt'))

    loc.sh('cat test1.txt')
    
    assert fread('test1.txt') == fread('test2.txt')
    
    # fread, fwrite, etc can take a `rem.file` instead of a string filename.
    # you can also use all *read and *write functions directly on the remote too.
    assert fread('test1.txt') == fread(rem.file('testing123.txt'))
    assert fread('test1.txt') == rem.fread('testing123.txt')

    # ls as a function returns a list of files (with absolute paths) on the selected remote.
    # the returned value is displayed on the webpage.
    return '\n'.join(rem.ls('/'))

@page("List files in some directory")
def list_files(directory):
    return sh(f"ls -la {directory | quote}")


# start internal webserver
webserver()

Installation

pip3 install git+https://github.com/EleutherAI/pyfra/

The version of PyPI is not up to date, do not use it.

Webserver screenshots

image image

Comments
  • Try to install sudo in _install

    Try to install sudo in _install

    Sudo is installed in setup.apt(), which is not run when python_version=None is set for an env. This PR tries to install the sudo package on _install which solves this issue.

    opened by kurumuz 1
  • Styling updates 2

    Styling updates 2

    This should fix some issues that were noticed recently.

    • increases the width of the content in the middle
    • all button icons are now the same (until we figure out better solution)
    • content that is overflowing should now be scrollable
    opened by jprester 0
  • Update styling

    Update styling

    I made some updates to styling for the admin dashboard pages.

    Stuff I did:

    • changed the styling to look like design mockup
    • moved ids to classes in css. Ids should be used for javascript selector
    • added some svg icons
    • made the UI somewhat responsive
    opened by jprester 0
  • docs: docs are empty

    docs: docs are empty

    Screenshot from the RTD page:

    image

    I recommend checking the raw output of the build on the RTD dashboard.

    Probably some library installation issue when running setup.

    opened by TomFrederik 0
  • Type annotations

    Type annotations

    Type annotations are a must-have for public facing library exports, as they allow users to infer a lot of information about calls/return values independent of documentation, as well as help with code completions.

    opened by hugbubby 0
Releases(v0.3.0)
  • v0.3.0(Dec 9, 2021)

    What's new

    • Envs now resume where they left off (and Remotes have an option for turning this behaviour on)
    • @stage caching added

    Breaking Changes

    • delegation promoted to full submodule and experiment removed
    • pyfra.functional removed
    • pyfra.web deprecated and moved to contrib
    • contrib revamp

    Full Changelog: https://github.com/EleutherAI/pyfra/compare/8e775df36ca8f2ae39b0b7add9c30eab446207b1...9616e835578f8ad04a6d9c3b405777fc4b7e0853

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0rc6(Sep 1, 2021)

Owner
EleutherAI
EleutherAI
flexible time-series processing & feature extraction

A corona statistics and information telegram bot.

PreDiCT.IDLab 206 Dec 28, 2022
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
EbookMLCB - ebook Machine Learning cơ bản

Mã nguồn cuốn ebook "Machine Learning cơ bản", Vũ Hữu Tiệp. ebook Machine Learning cơ bản pdf-black_white, pdf-color. Mọi hình thức sao chép, in ấn đề

943 Jan 02, 2023
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)

Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m

om Podey 1 Dec 03, 2021
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Kubeflow 3.1k Jan 06, 2023
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
A logistic regression model for health insurance purchasing prediction

Logistic_Regression_Model A logistic regression model for health insurance purchasing prediction This code is using these packages, so please make sur

ShawnWang 1 Nov 29, 2021
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
List of Data Science Cheatsheets to rule the world

Data Science Cheatsheets List of Data Science Cheatsheets to rule the world. Table of Contents Business Science Business Science Problem Framework Dat

Favio André Vázquez 11.7k Dec 30, 2022
Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

6 Jun 30, 2022
Regularization and Feature Selection in Least Squares Temporal Difference Learning

Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio

Mina Parham 0 Jan 18, 2022
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

Telekom Open Source Software 17 Nov 20, 2022
Kalman filter library

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM.

comma.ai 276 Jan 01, 2023
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023