Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Related tags

Machine Learningmlops
Overview

Federal University of Rio Grande do Norte

Technology Center

Department of Computer Engineering and Automation

Machine Learning Based Systems Design

References

  • 📚 Noah Gift, Alfredo Deza. Practical MLOps: Operationalizing Machine Learning Models [Link]
  • 📚 Chip Huyen. Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications. [Link]
  • 📚 Hannes Hapke, Catherine Nelson. Building Machine Learning Pipelines. [Link]
  • 📚 Mariano Anaya. Clean Code in Python [Link]
  • 📚 Aurélien Géron. Hands on Machine Learning with Scikit-Learn, Keras and TensorFlow. [Link]
  • 🤜 Dataquest Academic Program [Link]
  • 😃 CS329S - ML Systems Design [Link]
  • 🎯 Machine Learning Operations [Link]

Lessons

Week 01: Course Outline Open in PDF

  • Git and Version Control Open in Dataquest
    • You'll learn how to: a) organize your code using version control, b) resolve conflicts in version control, c) employ Git and Github to collaborate with others.
    • 👊 U1T1: guided project + getting a git repository.

Week 02: CLI fundamentals

  • Elements of the Command Line Open in Dataquest
    • You'll learn how to: a) employ the command line for Data Science, b) modify the behavior of commands with options, c) employ glob patterns and wildcards, d) define Important command line concepts, e) navigate he filesystem, f) manage users and permissions.
  • Text Processing in the Command Line Open in Dataquest
    • You'll learn how to: a) read and explore documentation, b) perform basic text processing, c) redirect and pipe output, d) inspect files, e) define different kinds of output, f) employ streams and file descriptors.
  • 🔠 U1T2: working with command line.

Week 03 - Clean Code Principles for Data Science and Machine Learning Open in PDF

  • Outline Open in Loom
  • Coding Best Practices Open in Loom
  • Writing Clean Code Open in Loom
  • Refactoring Code Open in Loom
  • Efficient Code Open in Loom
  • Documentation Open in Loom
  • Python Code Quality Authority (PCQA) - pycodestyle Open in Loom
  • PCQA - pylint Open in Loom
  • PCQA - autopep8 Open in Loom
  • PCQA - nbQA Open in Loom
  • ▶️ Hands on
    • 💾 Datasets [Link]
    • Writting Clean Code Jupyter
    • Exercise 01 Jupyter
    • Exercise 02 Jupyter
    • Exercise 03 Jupyter
    • Using pycodestyle Jupyter
    • Using pylint - script Python refactored script Python
    • Functions: Advanced - Best practices for writing functions Open in Dataquest

Week 04 Production Ready Code Open in PDF

  • Outline Open in Loom
  • Catching Errors Open in Loom
  • Testing and Data Science Open in Loom
  • A brief introduction about pytest Open in Loom
  • Logging Open in Loom
  • Case study: testing and logging Open in Loom
  • Model Drift Open in Loom
  • Hands on
    • Production ready code Jupyter
    • Data Visualization Fundamentals Open in Dataquest
      • You will learn how to: a) how to use data visualization to explore data and b) how and when to use the most common plots.
    • Storytelling Data Visualization and Information Design Open in Dataquest
      • You will learn how to: a) Create graphs using information design principles, b) create narrative data visualizations using Matplotlib, c) create visual patterns using Gestalt principles, d) control attention using pre-attentive attributes and e) employ Matplotlib's built-in styles.
Owner
Ivanovitch Silva
I'm an experimenter by design, and very interested in technologies related to Data Science & Machine Learning, Vehicles and Complex Networks.
Ivanovitch Silva
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
Time-series momentum for momentum investing strategy

Time-series-momentum Time-series momentum strategy. You can use the data_analysis.py file to find out the best trigger and window for a given asset an

Victor Caldeira 3 Jun 18, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
Dive into Machine Learning

Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You

Michael Floering 11.1k Jan 03, 2023
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
Napari sklearn decomposition

napari-sklearn-decomposition A simple plugin to use with napari This napari plug

1 Sep 01, 2022
Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Lars 653 Dec 27, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
Iterative stochastic gradient descent (SGD) linear regressor with regularization

SGD-Linear-Regressor Iterative stochastic gradient descent (SGD) linear regressor with regularization Dataset: Kaggle “Graduate Admission 2” https://w

Zechen Ma 1 Oct 29, 2021
Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Databricks Certification Spark Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along

19 Dec 13, 2022
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
Reproducibility and Replicability of Web Measurement Studies

Reproducibility and Replicability of Web Measurement Studies This repository holds additional material to the paper "Reproducibility and Replicability

6 Dec 31, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022