A GitHub action that suggests type annotations for Python using machine learning.

Overview

Typilus: Suggest Python Type Annotations

A GitHub action that suggests type annotations for Python using machine learning.

This action makes suggestions within each pull request as suggested edits. You can then directly apply these suggestions to your code or ignore them.

Sample Suggestion Sample Suggestion

What are Python type annotations? Introduced in Python 3.5, type hints (more traditionally called type annotations) allow users to annotate their code with the expected types. These annotations are optionally checked by external tools, such as mypy and pyright, to prevent type errors; they also facilitate code comprehension and navigation. The typing module provides the core types.

Why use machine learning? Given the dynamic nature of Python, type inference is challenging, especially over partial contexts. To tackle this challenge, we use a graph neural network model that predicts types by probabilistically reasoning over a program’s structure, names, and patterns. This allows us to make suggestions with only a partial context, at the cost of suggesting some false positives.

Install Action in your Repository

To use the GitHub action, create a workflow file. For example,

name: Typilus Type Annotation Suggestions

# Controls when the action will run. Triggers the workflow on push or pull request
# events but only for the master branch
on:
  pull_request:
    branches: [ master ]

jobs:
  suggest:
    # The type of runner that the job will run on
    runs-on: ubuntu-latest

    steps:
    # Checks-out your repository under $GITHUB_WORKSPACE, so that typilus can access it.
    - uses: actions/[email protected]
    - uses: typilus/[email protected]
      env:
        GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
        MODEL_PATH: path/to/model.pkl.gz   # Optional: provide the path of a custom model instead of the pre-trained model.
        SUGGESTION_CONFIDENCE_THRESHOLD: 0.8   # Configure this to limit the confidence of suggestions on un-annotated locations. A float in [0, 1]. Default 0.8
        DISAGREEMENT_CONFIDENCE_THRESHOLD: 0.95  # Configure this to limit the confidence of suggestions on annotated locations.  A float in [0, 1]. Default 0.95

The action uses the GITHUB_TOKEN to retrieve the diff of the pull request and to post comments on the analyzed pull request.

Technical Details & Internals

This GitHub action is a reimplementation of the Graph2Class model of Allamanis et al. PLDI 2020 using the ptgnn library. Internally, it uses a Graph Neural Network to predict likely type annotations for Python code.

This action uses a pre-trained neural network that has been trained on a corpus of open-source repositories that use Python's type annotations. At this point we do not support online adaptation of the model to each project.

Training your own model

You may wish to train your own model and use it in this action. To do so, please follow the steps in ptgnn. Then provide a path to the model in your GitHub action configuration, through the MODEL_PATH environment variable.

Contributing

We welcome external contributions and ideas. Please look at the issues in the repository for ideas and improvements.

You might also like...
 30 Days Of Machine Learning Using Pytorch
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

A machine learning web application for binary classification using streamlit
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Comments
  • IndexError: list index out of range

    IndexError: list index out of range

    Diff GET Status Code:  200
    Traceback (most recent call last):
      File "/usr/src/entrypoint.py", line 81, in <module>
        changed_files = get_changed_files(diff_rq.text)
      File "/usr/src/changeutils.py", line 38, in get_changed_files
        assert file_diff_lines[3].startswith("---")
    IndexError: list index out of range
    

    logs_302.zip

    opened by ZdenekM 1
  • Several small fixes

    Several small fixes

    Here are couple of things I noticed trying Typilus inference using GH Action:

    • gracefully handle patches that include a file renames (\wo any content modifications) by skipping such files
    • extractor stats reporting only processed files
    opened by bzz 0
  • Create a ptgnn-based Typilus model

    Create a ptgnn-based Typilus model

    Create and use the full Typilus model instead of graph2class.

    • [ ] Implement it in ptgnn
    • [ ] Use action cache to store intermediate result
    • [ ] Auto-update type space "once in a while"
    enhancement 
    opened by mallamanis 0
Releases(v0.9)
A Lightweight Hyperparameter Optimization Tool 🚀

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

Aaron Zuspan 76 Dec 15, 2022
Distributed Computing for AI Made Simple

Project Home Blog Documents Paper Media Coverage Join Fiber users email list Uber Open Source 997 Dec 30, 2022

Apple-voice-recognition - Machine Learning

Apple-voice-recognition Machine Learning How does Siri work? Siri is based on large-scale Machine Learning systems that employ many aspects of data sc

Harshith VH 1 Oct 22, 2021
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
Empyrial is a Python-based open-source quantitative investment library dedicated to financial institutions and retail investors

By Investors, For Investors. Want to read this in Chinese? Click here Empyrial is a Python-based open-source quantitative investment library dedicated

Santosh 640 Dec 31, 2022
Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Breast-Cancer-Classification - Using SKLearn breast cancer dataset which contains 569 examples and 32 features classifying has been made with 6 different algorithms

Mert Sezer Ardal 1 Jan 31, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
Learn Machine Learning Algorithms by doing projects in Python and R Programming Language

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language. This repo covers all aspect of Machine Learning Algorithms.

Ravi Chaubey 6 Oct 20, 2022
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022